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PREFACE

THIS book has been prepared in order to provide students and

draughtsmen engaged in Shipbuilders' and Naval Architects'

drawing offices with a text-book which should explain the

calculations which continually have to be performed. It is

intended, also, that the work, and more especially its later

portions, shall serve as a text-book for the theoretical portion

of the examinations of the Science and Art Department in

Naval Architecture. It has not been found possible to include

all the subjects given in the Honours portion of the syllabus,

such as advanced stability work, the rolling of ships, the vibra-

tion of ships, etc. These subjects will be found fully treated

in one or other of the books given in the list on page 292.

A special feature of the book is the large number of

examples given in the text and at the ends of the chapters.

By means of these examples, the student is able to test his

grasp of the principles and processes given in the text. It is

hoped that these examples, many of which have been taken

from actual drawing office calculations, will form a valuable

feature of the book.

Particulars are given throughout the work and on page 292

as to the books that should be consulted for fuller treatment of

the subjects dealt with.

In the Appendix are given the syllabus and specimen

questions of the examination in Naval Architecture conducted
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Preface.

by the Science and Art Department. These are given by the

permission of the Controller of Her Majesty's Stationery Office.

I have to thank Mr. A. W. Johns, Instructor in Naval

Architecture at the Royal Naval College, Greenwich, for

reading through the proofs and for sundry suggestions. I also

wish to express my indebtedness to Sir W. H. White, K.C.B.,

F.R.S., Assistant Controller and Director of Naval Construction

of the Royal Navy, for the interest he has shown and the

encouragement he has given me during the progress of the

book.

E. L. ATTWOOD.

LONDON,

February, 1899.
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CHAPTER I.

AREAS, VOLUMES, WEIGHTS, DISPLACEMENT, ETC.

Areas of Plane Figures.

A Rectangle. This is a four-sided figure having its opposite

sides parallel to one another and all its angles right angles.

Such a figure is shown in D. C

Fig. i. Its area is the pro-

duct of the length and the

breadth, or AB x BC. Thus
a rectangular plate 6 feet

long and 3 feet broad will

contain
A. B.

6 x 3 = 1 8 square feet F 'G. i-

and if of such a thickness as to weigh 1
2-| Ibs. per square foot,

will weigh

18 X 12^ = 225 Ibs.

A Square. This is a particular case of the above, the

length being equal to the breadth. Thus a square hatch of

3^ feet side will have an area of

1 \> 1 7 7 49

= 12^ square feet
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c.

A Triangle. This is a figure contained by three straight

lines, as ABC in Fig. 2. From the vertex C drop a perpen-
dicular on to the base AB
(or AB produced, if neces-

sary). Then the area is

given by half the product
of the base into the height,

or

i(AB X CD)
If we draw through the

apex C a line parallel to

the base AB, any triangle

having its apex on this line,

and having AB for its base, will be equal in area to the

triangle ABC. If more convenient, we can consider either A
or B as the apex, and BC or AC accordingly as the base.

Thus a triangle of base 5-^ feet and perpendicular drawn

from the apex 2\ feet, will have for its area

-UL y 3. 9J.
2 ^4 16

FIG. 2.

Iv ciy ?! !
2 * 32 A ^4 2

= 6^- square feet

If this triangle be the form of a plate weighing 20 Ibs. to

the square foot, the weight of the plate will be

f| X 20 = 123! Ibs.

A Trapezoid. This is a figure formed of four straight

lines, of which two only are

parallel. Fig. 3 gives such a

figure, ABCD.
If the lengths of the parallel

sides AB and CD are a and b

respectively, and h is the per-

pendicular distance between

them, the area of the trapezoid

is given byB.

FIG. 3. x h

or one-half the sum of the parallel sides multiplied by the

perpendicular distance between them.
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Example. An armour plate is of the form of a trapezoid with parallel
sides 8' 3" and 8' 9" long, and their distance apart 12 feet. Find its

weight if 6 inches thick, the material of the armour plate weighing 490 Ibs.

per cubic foot.

First we must find the area, which is given by

/ 8' 3" + 8' 9" ^
I

- -
I X 12 square feet = ^ X 12

= 102 square feet

The plate being 6 inches thick = J foot, the cubical contents of the

plate will be

102 X 5 = 51 cubic feet

The weight will therefore be

51 X 490
51 X 490 Ibs. = * -~
J

2240
= 11*15 tons

A Trapezium is a quadrilateral or four-sided figure of

which no two sides are parallel.

Such a figure is ABCD (Fig. 4). Its area may be found

by drawing a diagonal BD
and adding together the

areas of the triangles ABD,
BDC. These both have the

same base, BD. Therefore

from A and C drop per-

pendiculars AE and CF on

to BD. Then the area of

the trapezium is given by

i(AE + CF) x BD

Example. Draw a trapezium
F 'c- 4-

on scale J inch = I foot, where
four sides taken in order are 6, 5, 6, and 10 feet respectively, and the

diagonal from the starting-point 10 feet. Find its area in square feet.

Ans. 40 sq. feet.

A Circle. This is a figure all points of whose boundary
are equally distant from a fixed point within it called the centre.

The boundary is called its circumference^ and any line from the

centre to the circumference is called a radius. Any line passing

through the centre and with its ends on the circumference

is called a diameter.
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The ratio between the circumference of a circle and its

diameter is called TT,* and TT = 3* 141 6, or nearly -^
Thus the length of a thin wire forming the circumference

of a circle of diameter 5 feet is given by

* X 5 = 5 X 3*1416 feet

= 157080 feet

or using TT = -^, the circumference = 5 x -
7
-

=
J =157 feet nearly

The circumference of a mast 2' 6" in diameter is given by

z\ X TT feet = f x -^
= ^ = 7y feet nearly

The tfraz <?/" a Vr& of diameter </ is given by

-JL
(^ = , x

Thus a solid pillar 4 inches in diameter has a sectional

area of

- v 4

4
- x 4

= 12^ square inches nearly

A hollow pillar 5 inches external diameter and ^ inch thick

will have a sectional area obtained by subtracting the area of

a circle 4^ inches diameter from the area of a circle 5 .inches

diameter

-c
=

3- 73 square inches

The same result may be obtained by taking a mean

diameter of the ring, finding its circumference, and multiplying

by the breadth of the ring.

Mean diameter = 4f inches

Circumference = -^ X -^ inches

Area = (^ X -^) X i square inches

= 3-73 square inches as before

1 This is the Greek letter pi, and is always used to denote 3- 141 6, or 2
7
*

nearly ; that is, the ratio borne by the circumference of a circle to its

diameter.
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Trapezoidal Rule. We have already seen (p. 2) that

the area of a trapezoid, as ABCD, Fig. 5, is given by

i(AD + BC)AB, or calling AD, BC, and AB y^ >,, and //

respectively the area is given by

If, now, we have two trapezoids joined together, as in

B.

Fig. 6, having BE = AB, the area of the added part will be

given by

The area of the whole figure is given by

l(j! -f-^X' + |0'2 +y*)& = \h(y, + zy, +.r3)

If we took a third trapezoid and joined on in a similar

manner, the area of the whole figure would be given by

ay, -f aya + >'*)
=

Trapezoidal rulefor finding the area of a curvilinear figure,

as ABCD, Fig. 7.

Divide the base AB into a convenient number of equal

parts, as AE, EG, etc., each of length equal to h, say. Set up

perpendiculars to the base, as EF, GH, etc. If we join DF,

FH, etc., by straight lines, shown dotted, the area required

will very nearly equal the sum of the areas of the trapezoids

ADFE, EFHG, etc. Or using the lengths y } , y, etc., as

indicated in the figure

Area = h ~'+y.+y5 +}>4+y+y
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In the case of the area shown in Fig. 7, the area will be

somewhat greater than that given by this rule. If the curve,

however, bent towards the base line, the actual area would be

somewhat less than that given by this rule. In any case, the

closer the perpendiculars are taken together the less will be

the error involved by using this rule. Putting this rule into

words, we have

To find the area of a curvilinear figure, as ABCD, Fig. 7 ,

by means of the trapezoidal rule, divide the base into any con-

venient number ofequal parts, and erectperpendiciilars to the base

meeting tJie curve ; then to the half-sum of the first and last of
these add the sum of all the intermediate ones ; the result multi-

plied by the common distance apart willgive the area required.

A. K.
FIG. 7.

M. 0. B

The perpendiculars to the base AB, as AD, EF, are termed
" ordinates" and any measurement along the base from a given

starting-point is termed an "abscissa" Thus the point P on

the curve has an ordinate OP and an abscissa AO when

referred to the point A as origin.

Simpson's First Rule. 1 This rule assumes that the

curved line DC, forming one boundary of the curvilinear area

ABCD, Fig. 8, is a portion of a curve known as a parabola

of the second order? In practice it is found that the results

given by its application to ordinary curves are very accurate,

1
It is usual to call these rules Simpson's rules, but the first rule

was given before Simpson's time by James Stirling, in his "Methodus

Differentialis," published in 1730.
2 A "parabola of the second order" is one whose equation referred

to co-ordinate axes is of the form^' = a + a^x + a^x
1
, where ac , <*,, a* are

constants.
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and it is this rule that is most extensively used in finding the

areas of curvilinear figures required in ship calculations.

Let ABCD, Fig. 8, be a figure bounded on one side by
the curved line DC, which, as

stated above, is assumed to be

a parabola of the second order.

AB is the base, and AD and

BC are end ordinates perpen-
dicular to the base.

Bisect AB in E, and draw

EF perpendicular to AB, meet- ^ ^
ing the curve in F. Then the gy g
area is given by FIG. 8.

|AE(AD + 4EF + BC)

or using _yl5 y.,, y3 to represent the ordinates, h the common

interval between them

Area = - +

Now, a long curvilinear area 1

may be divided up into a

number of portions similar to the above, to each of which the

above rule will apply. Thus the area of the portion GHNM
of the area Fig. 7 will be given by

h

and the portion MNCB will have an area given by
h

Therefore the total area will be, supposing all the ordinates

are a common distance h apart

-(>'i + 4/2 + 2j>3 + 4j'4 + 2_y5 + 4j(i +;-7)

Ordinates, as GH, MN, which divide the figure into the

elementary areas are termed "
dividing ordinates"

Ordinates between these, as EF, KL, OP, are termed
" intermediate ordinates"

1 The curve is supposed continuous. If the curvature changes abruptly
at any point, this point must be at a dividing ordinate.
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Notice that the area must have an even number of intervals,

or, what is the same thing, an odd number of ordinates, for

Simpson's first rule to be applicable.

Therefore, putting Simpson's first rule into words, we
have

Divide the base into a convenient even number of equal parts,

and erect ordinates meeting the curve.. TJien to the sum of the end

ordinates add four times the even ordinates and twice tJic odd

ordinates. The sum thus obtained, multiplied by one-third the

common distance apart of the ordinates, will give the area.

Approximate Proof of Simpson's First Rule. The
truth of Simpson's first rule may be understood by the following

approximate proof :

x

Let DFC, Fig. 9, be a curved line on the base AB, and

with end ordinates AD, BC perpendicular to AB. Divide AB
equally in E, and draw the ordinate EF perpendicular to AB.

Then with the ordinary notation

Area =
-(y\ + 4;-., + y3 )

by Simpson's first rule. Now

E
FIG. 9.

8.

divide AB into three equal

parts by the points G and H.

Draw perpendiculars GJ and

HK to the base AB. At F
draw a tangent to the 'curve,

meeting GJ and HK in J and

K. Join DJ and KC. Now,
it is evident that the area we
want is very nearly equal to

the area ADJKCB. This

will be found by adding to-

gether the areas of the trape-

zoids ADJG, GJKH, HKCB.

Area of ADJG = |(AD + GJ)AG
GJKH = i(GJ + HK)GH
HKCB = i(HK + BC)HB

1 Another proof will be found on p. 73.
be found in appendix A, p. 245.

The mathematical proof will
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Now, AG = GH = HB = ^AB = fAE, therefore the total

area is

i
(

2

) (AD + 2GJ + 2HK + BC)
\ O '

Now, AE = h, and GJ + HK = 2EF (this may be seen at

once by measuring with a strip of paper), therefore the total

area is

^(AD + 4EF + BC) = -(y, + 4^-+^)
o *3

which is the same as that given by Simpson's first rule.

Application of Simpson's First Rule. Example. A curvi-

linear area has ordinates at a common distance apart of 2 feet, the lengths

being 1-45, 2*65, 4-35, 6-45, 8-50, 10-40, and 11-85 feet respectively.
Find the area of the figure in square feet.

In finding the area of such a curvilinear figure by means of Simpson's
first rale, the work is arranged as follows :

Number of
ordinate.
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decimals of a foot, and are best measured off with a decimal

scale. If a scale showing feet and inches is used, then the

inches should be converted into decimals of a foot
; thus,

6' 9" = 6-75', and 6' 3^" = 6-3'. In the next column are placed

Simpson's multipliers in their proper order and opposite their

corresponding ordinates. The order may be remembered by

combining together the multipliers for the elementary area first

considered

i 4 i

i 4 i

or 1424241
The last column contains the product of the length of the

ordinate and its multiplier given in the third column. These

are termed the "functions of ordinates'' The sum of the

figures in the last column is termed the " sum offunctions of
ordinates" This has to be multiplied by one-third the common

interval, or in this case f . The area then is given by

117 X f = 78 square feet

Simpson's Second Rule. This rule assumes that the

curved line DC, forming one boundary of the curvilinear area

H.

FIG. 10.

ABCD, Fig. 10, is a portion of a curve known as "a parabola

of the third order" l

Let ABCD, Fig. 10, be a figure bounded on one side by
the curved line DC, which, as stated above, is assumed to be

1 A "parabola of the third order" is one whose equation referred to

co-ordinate axes is of the form y = aa + a^v + a,.^ + (ijX
3
, where at , a,,

av as are constants.
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" a parabola of tlte third order" AB is the base, and AD and

BC are end ordinates perpendicular to the base. Divide the

base AB into three equal parts by points E and F, and draw

EG, FH perpendicular to AB, meeting the curve in G and H
respectively. Then the area is given by

fAE(AD + sEG + sFH + BC)

or, using y^ j2 > }>*, y^ to represent the ordinates, and h the

common interval between them

Area = \h(y* + zy, + 3^3+ y4)

Now, a long curvilinear area 1
may be divided into a

number of portions similar to the above, to each of which the

above rule will apply. Thus the area of the portion KLCB in

Fig. 7 will be given by

Consequently the total area of ABCD, Fig. 7, will be,

supposing all the ordinates are a common distance h apart

\h(y\ + 3 y-2 + 3Js + 2y4 -f
3^5

4- 3Je + y-}

The ordinate KL is termed a "
dividing ordinate" and the

others, EF, GH, MN, OP, are termed "
intermediate ordinates'.'

This rule may be approximately proved by a process similar to

that adopted on p. 8 for the first rule.

Application of Simpson's Second Rule. Example. A cur-

vilinear area has ordinates at a common distance apart of 2 feet, the

lengths being 1-45, 2*65, 4-35, 6-45, 8-50, 10*40, and ir85 feet respectively.
Find the area of the figure in square feet by the use of Simpson's second rule.

In finding the area of such a curvilinear figure by means of Simpson's
second rule, the work is arranged as follows :

Number of
ordinate.



12 Theoretical Naval Architecture.

This curvilinear area is the same as already taken for an

example of the application of Simpson's first rule. It will be

noticed that the number of intervals is 6 or a multiple of 3.

We are consequently able to apply Simpson's second rule to

finding the area. The columns are arranged as in the previous

case, the multipliers used being those for the second rule.

The order may be remembered by combining together the

multipliers for the elementary area with three intervals first

considered

or i 3 3 2 3 3 i

For nine intervals the multipliers would be i, 3, 3, 2, 3, 3,

2, 3> 3, i.

The sum of the functions of ordinates has in this case to be

multiplied by f the common interval, or
-| x 2 = f,

and con-

sequently the area is

103*9 * f = 77'9 2 5 square feet

It will be noticed how nearly the areas as obtained by the

two rules agree. In practice the first rule is used in nearly all

cases, because it is much simpler than the second rule and

quite as accurate. It sometimes happens, however, that we

only have four ordinates to deal with, and in this case Simp-

son's second rule must be used.

To find the Area of a Portion of a Curvilinear Area

contained between Two Consecutive Ordinates. Such

a portion is AEFD, Fig. 8. In order to obtain this area, we

require the three ordinates to the curve y\y*y& The curve

DFC is assumed to be, as in Simpson's first rule, a parabola

of the second order. Using the ordinary notation, we

have

Area of ADFE = iVHs;
1

! + 8j2
-

_r:))

or, putting this into words

To eight times the middle ordinate add Jive times t/i near end

ordinate and siibtract tJiefar end ordinate ; multiply the remainder

by y
1

^-
the common interval: the result will be the area.

Thus, if the ordinates of the curve in Fig. 8 be 8*5, io -

4,
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11*85 feet
j
and 2 feet apart, the area of AEFD will be given

by-

TV * 2(5 X 8*5 + 8 x 10-4 11*85) = l8 '97 square feet

Similarly the area of EBCF will be given by

B.

1^ X 2(5 x 11*85 + 8 x 10*4 8*5) = 22*32 square feet

giving a total area of the whole figure as 41*29 square feet.

Obtaining this area by means of Simpson's first rule, we
should obtain 41*3 square feet.

This rule is sometimes known as the "five-eight
"

rule.

Subdivided Intervals. When the curvature of a line

forming a boundary of an area, as Fig. n, is very sharp, it is

found that the distance apart of ordinates, as used for the

straighter part of the curve, does not give a sufficiently accurate

result. In such a case, ordinates

are drawn at a sub-multiple of

the ordinary distance apart of

the main ordinates.

Take ABC, a quadrant of a

circle (Fig. n), and draw the

three ordinates y.>, y3 , y\ a dis-

tance h apart. Then we should

get the area approximately by

putting the ordinates through

Simpson's first rule. Now, the

curve EFC is very sharp, and

the result obtained is very far

from being an accurate one. Now put in the intermediate

ordinates /, /'. Then the area of the portion DEC will be

given by

= o at end)

A. D. G
FIG. n.

or we may write this

lift*

The area of the portion ABED is given by

T^CVI + 4
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or the area of the whole figure

\h(y, + w + iiy, + 2/ + .>, + 2/ + i>'5)

Thus the multipliers for ordinates one-half the ordinary distance

apart are
, 2, |, and for ordinates one-quarter the ordinary

distance apart are
-5-, i, -|, i, ^. Thus we diminish the

multiplier of each ordinate of a set of subdivided intervals in

the same proportion as the intervals are subdivided. Each

ordinate is then multiplied by its proper multiplier found in

this way, and the sum of the products multiplied by ^ or f the

whole interval according as the first or second rule is used.

An exercise on the use and necessity for subdivided intervals

will be found on p. 41.

Algebraic Expression for the Area of a Figure
bounded by a Plane Curve. It is often convenient to be

able to express in a short form the area of a plane curvilinear

figure.

In Fig. 12, let ABCD be a strip cut off by the ordinates

AB, CD, a distance A* apart,

A# being supposed small.

Then the area of this strip is

very nearly

y X A*

where y is the length of the

ordinate AB. If now we

imagine the strip to become

indefinitely narrow, the small

triangularpiece BDE will dis-

appear, and calling dx the

E.

O. AC.
FIG. 12.

breadth of the strip, its area will be

y X dx

The area of the whole curvilinear figure would be found if

we added together the areas of all such strips, and this could

be written

fy.dx
where the symbol / may be regarded as indicating the sum

of all such strips as y . dx. We have already found that
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Simpson's rules enable us to find the areas of such figures,

so we may look upon the expression for the area

jy.dx
as meaning that, to find the area of a figure, we take the

length of the ordinate y at convenient intervals, and put them

through Simpson's multipliers. The result, multiplied by ^ or

f the common interval, as the case may be, will give the area.

A proper understanding of the above will be found of great

service in dealing with moments in the next chapter.

To find the Area of a Figure bounded by a Plane

Curve and Two Radii. Let OAB, Fig. 13, be such a figure,

OA, OB being the

bounding radii.

Take two points

very close together on

the curve PP'
; join OP,

OP', and let OP = r

and the small angle
POP' = A0 in circular

measure. 1 Then OP
= OP' = r very nearly,

and the area of the

elementary portion

being the length of PP',
-

and regarding OPP' as

a triangle. If now we consider OP, OP' to become in-

definitely close together, and consequently the angle POP'

indefinitely small = dO say, any error in regarding POP' as a

triangle will disappear, and we shall have

Area POP' =-.dB
2

and the whole area AOB is the sum of all such areas which
can be drawn between OA and OB, or

<*-.*
2

1 See p. 86.
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Now, this exactly corresponds to the algebraic expression
for the area of an ordinary plane curvilinear area, viz.

\y .dx (seep. 15)
7"*

y corresponding to and dx corresponding to dO. Therefore

divide the angle between the bounding radii into an even

number of equal angular intervals by means of radii. Measure

these radii, and treat their half-squares as ordinates of a curve

by Simpson's first rule, multiplying the addition by \ the

common angular interval in circular measure. Simpson's second

rule may be used in a similar manner.

The circular measure of an angle
1

is the number of degrees

it contains multiplied by ,
or 0-01745. Thus the circular

180

measure of

o 7T

9 = ~ =
2

= i'578

and the circular measure of 15 is 0-26175.

Example. To find the area of a figure bounded by a plane curve and
two radii 90 apart, the lengths of radii 15 apart being o, 2'6, 5'2, 7'8, 10-5,

I3-I, IS7-

Angle from
first radius.
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Measurement of Volumes.

The Capacity or Volume of a Rectangular Block
is the product of the length, breadth, and depth, or, in other

words, the area of one face multiplied by the thickness. All

these dimensions must be expressed in the same units. Thus

the volume of an armour plate 12 feet long, 8^ feet wide, and

1 8 inches thick, is given by

12 x 8^ X 4 = 12 x ^/ X f = -^f
1 = 148^ cubic feet

The Volume of a Solid of Constant Section is the

area of its section multiplied by its length. Thus a pipe 2 feet

in diameter and 100 feet long has a section of = -^ square
4

feet, and a volume of -7
- X 100 = 2M. = ^^ cubic feet.

A hollow pillar 7' 6" long, 5 inches external diameter, and

j inch thick, has a sectional area of

3'73 square inches

or i-^3 square feet

144

and the volume of material of which it is composed is

(3'73\ v i5 _ l8 ' 6 5
I A ~2

\ 144 / 2 QO
= 0*195 cubic foot

Volume of a Sphere. This is given by -
. d3

, where d
6

is the diameter. Thus the volume of a ball 3 inches in dia-

meter is given by

TT 22 X 27

6 <27= ~&r
= 147 cubic inches

Volume of a Pyramid. This is a solid having a base
in the shape of a polygon, and a point called its vertex not in

the same plane as the base. The vertex is joined by straight
lines to all points on the boundary of the base. Its volume is

given by the product of the area of the base and one-third the

C
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perpendicular distance of the vertex from the base. A cone is

a particular case of the pyramid having for its base a figure

with a continuous curve, and a right circular cone is a cone

having for its base a circle and its vertex immediately over the

centre of the base.

To find the Volume of a Solid bounded by a

Curved Surface. The volumes of such bodies as this are

continually required in ship calculation work, the most

important case being the volume of the under-water portion

of a vessel. In this case, the volume is bounded on one side

by a plane surface, the water-plane of the vessel. Volumes

of compartments are frequently required, such as those for con-

taining fresh water or coal-bunkers. The body is divided by
a series of planes spaced equally apart. The area of each

section is obtained by means of one of the rules already

explained. These areas are treated as the ordinates of a new

curve, which may be run in, with ordinates the spacing of the

planes apart. It is often desirable to draw this curve with

areas as ordinates as in Fig. 14, because, if the surface is a fair

CURVE

FIG. 14.

surface, the curve of areas should be a fair curve, and should

run evenly through all the spots ; any inaccuracy may then be

detected. The area of the curve of areas is then obtained by

one of Simpson's rules as convenient, and this area will re-

present the cubical contents of the body.

Example. A coal-bunker has sections 17' 6" apart, and the areas of

these sections are 98, 123, 137, 135, 122 square feet respectively. Find the
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volume of the bunker and the number of tons of coal it will hold, taking

44 cubic feet of coal to weigh i ton.

Areas.
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Number of Area of
section. section.
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Displacement. The amount of water displaced or put

aside by a vessel afloat is termed her "
displacement''

1 This

may be reckoned as a volume, when it is expressed in cubic

feet, or as a weight, when it is expressed in tons. It is usual

to take salt water to weigh 64 Ibs. per cubic foot, and conse-

quently -^-f
= 35 cubic feet of salt water will weigh one

ton. Fresh water, on the other hand, is regarded as weighing

62^ Ibs. per cubic foot, or 36 cubic feet to the ton. The

volume displacement is therefore 35 or 36 times the weight dis-

placement, according as we are dealing with salt or fresh water.

If a vessel is floating in eqidlibritim in still water, the weight

of water she displaces must exactly equal the weight of the vessel

herself with everything she has on board.

That this must be true may be understood from the follow-

ing illustrations

i. Take a large basin and stand it in a dish (see Fig. 16).

V V-.. ^ J
FIG. 16.

Just fill the basin to the brim with water. Now carefully place

a smaller basin into the water. It will be found that some of

the water in the large basin will be displaced, and water will

spill over the edge of the large basin into the dish below.

It is evident that the water displaced by the basin is equal
in amount to the water that has been caught by the dish, and
if this water be weighed it will be found, if the experiment be

conducted accurately, that the small basin is equal in weight to

the water in the dish, that is, to the water it has displaced.

2. Consider a vessel floating in equilibrium in still water, and

imagine, if it were possible, that the water is solidified, main-

taining the same level, and therefore the same density. If now
we lift the vessel out, we shall have a cavity left behind which
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will be exactly of the form of the under-water portion of the

ship, as Fig. 17. Now let the cavity be filled up with water.

The amount of water we pour in will evidently be equal to the

volume of displacement of the vessel. Now suppose that the

solidified water outside again becomes water. The water we
have poured in will remain where it is, and will be supported

by the water surrounding it. The support given, first to the

vessel and now to the water we have poured in, by the sur-

WATER SURFACE.

FIG. 17.

rbunding water must be the same, since the condition of the

outside water is the same. Consequently, it follows that the

weight of the vessel must equal the weight of water poured
in to fill the cavity, or, in other words, the weight of the

vessel is equal to the weight of water displaced.

If the vessel whose displacement has been calculated on P
is floating at her L.W.P. in salt water, her total weight will be

4052 -4- 35 = II 5'8 to*15

If she floated at the same L.W.P. in fresh water, her total weight
would be

4052 -7-36 = 112^ tons

It will be at once seen that this property of floating bodies

is of very great assistance to us in dealing with ships. For, to

find the weight of a ship floating at a given line, we do not

need to estimate the weight of the ship, but we calculate out

from the drawings the displacement in tons up to the given line,

and this must equal the total weight of the ship.

Curve of Displacement. The calculation given on p. 20

gives the displacement of the vessel up to the load-water plane,

but the draught of a ship continually varies owing to different

weights of cargo, coal, stores, etc., on board, and it is desirable
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to have a means of determining quickly the displacement at

any given draught. From the rules we have already investi-

gated, the displacement in tons can be calculated up to each

water-plane in succession. If we set down a scale of mean

draughts, and set off perpendiculars to this scale at the places

where each water-plane comes, and on these set off on a con-

venient scale the displacement we have found up to that water-

plane, then we should have a number of spots through which we
shall be able to pass a fair curve if the calculations are correct.

t SCALE FOR DISPLACEMENT.-

FIG. 18

A curve obtained in this way is termed a "
curve of displacement"

and at any given mean draught we can measure the displace-

ment of the vessel at that draught, and consequently know at

once the total weight of the vessel with everything she has on

board. This will not be quite accurate if the vessel is floating

at a water-plane not parallel to the designed load water-plane.

Fig. 1 8 gives a "curve of displacement" for a vessel, and the

following calculation shows in detail the method of obtaining

the information necessary to construct it.
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The areas of a vessel's water-planes, two feet apart, are as

follows :

L.W.L.
2 W.L.
3 W.L.
4 W.L.
5 W.L.
6 W.L.
7 W.L.

7800 square feet.

7450
6960
6290
5460
4320
2610

The mean draught to the L.W.L. is 1 4' o", and the displace-
ment below the lowest W.L. is 7 1 tons.

To find the displacement to the L.W.L.

Number of ;

W.L.
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Displacement in tons between ) , , a % , i

No. , and No. , W.L.'s }

= I
'
6* > * " * *

= 436 tons nearly

.'. the displacement up to No. 2

W.L. is 2047 436
= 1611 tons without the

appendage

The displacement between i and 3 W.L.'s can be found by

putting the areas of i, 2 and 3 W.L.'s through Simpson's first

rule, the result being 848 tons nearly.

.'. the displacement up to No. 3 )

,, T T . f
= 1 1 99 tons without the

W.L. is 2047 848
appendage

The displacement up to No. 4 W.L. can be obtained by

putting the areas of 4, 5, 6, and 7 W.L.'s through Simpson's
second rule, the result being

819 tons without the appendage

The displacement up to No. 5 W.L. can be obtained by

putting the areas of 5, 6, and 7 W.L.'s through Simpson's first

rule, the result being

482 tons without the appendage

The displacement up to No. 6 W.L. can be obtained by
means of the five-eight rule, the result being

20 1 tons without the appendage

Collecting the above results together, and adding in the

appendage below No. 7 W.L., we have

Displacement up to L.W.L.
2 W.L.
3 W.L.
4 W.L.
5 W.L.
6 W.L.
7 W.L.

2118 tons.

1682

1270
890
553
272

These displacements, set out at the corresponding draughts,

are shown in Fig. 18, and the fair curve drawn through forms

the "curve of displacement" of the vessel. It is usual to com-

plete the curve as indicated right down to the keel, although
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the ship could never float at a less draught than that given by
the weight of her structure alone, or when she was launched.

Tons per Inch Immersion. It is frequently necessary
to know how much a vessel will sink, when floating at a given

water-line, if certain known weights are placed on board, or

how much she will rise if certain known weights are removed.

Since the total displacement of the vessel must equal the weight
of the vessel herself, the extra displacement caused by putting
a weight on board must equal this weight. If A is the area

TONS PER INCH IMMERSION.

FIG. 19.

of a given water-plane in square feet, then the displacement

of a layer i foot thick at this water-plane, supposing the vessel

parallel-sided in its neighbourhood, is

A cubic feet

A
or tons in salt water

35

For a layer i inch thick only, the displacement is

A
35 X 12

tons
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and this must be the number of tons we must place on board

in order to sink the vessel i inch, or the number of tons we

must take out in order to lighten the vessel i inch. This is

termed the "tons per inch immersion" at the given water-line.

This assumes that the vessel is parallel-sided at the water-line

for the depth of i inch up and i inch down, which may, for all

practical purposes, be taken as the case. If, then, we obtain

the tons per inch immersion at successive water-planes parallel

to the load water-plane, we shall be able to construct a " curve

of tonsper inch immersion" in the same way in which the curve

of displacement was constructed. Such a curve is shown in

Fig. 19, constructed for the same vessel for which the displace-

ment curve was calculated. By setting up any mean draught,

say 1 1 feet, we can measure off the "
tons per inch immersion,"

supposing the vessel is floating parallel to the load water-plane ;

in this case it is tyi tons. Suppose this ship is floating at a

mean draught of 1 1 feet, and we wish to know how much she

will lighten by burning too tons of coal. We find, as above,

the tons per inch to be 17^, and the decrease in draught is

therefore

100 4- \i\ = 5f inches nearly

Curve of Areas of Midship Section. This curve is

usually plotted off on the same drawing as the displacement

curve and the curve of tons per inch immersion. The ordi-

nates of the immersed part of the midship section being known,
we can calculate its area up to each of the water-planes in

exactly the same way as the displacement has been calculated.

These areas are set out on a convenient scale at the respective

mean draughts, and a line drawn through the points thus

obtained. If the calculations are correct, this should be a fair

curve, and is known as
"

tfie curve of areas of midship section"

By means of this curve we are able to determine the area of

the midship section up to any given mean draught.

Fig. 20 gives the curve of areas of midship section for the

vessel for which we have already determined the displacement
curve and the curve of tons per inch immersion.

Coefficient of Fineness of Midship Section. If we
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draw a rectangle with depth equal to the draught of water at

the midship section to top of keel, and breadth equal to the

AREAS OF MID; SEC: SQ-. FT;

|4OO. ,300. iZOO. .IOO.

extreme breadth at the midship section, we shall obtain what

may be termed the circumscribing rectangle of the immersed

midship section. The area of the immersed midship section

will be less than the area of this rectangle, and the ratio

area of immersed midship section

area of its circumscribing rectangle

is termed the coefficient offineness of midship section.

Example. The midship section of a vessel is 68 feet broad at its

broadest part, and the draught of water is 26 feet. The area of the immersed

midship section is 1584 square feet. Find the coefficient of fineness of the

midship section.

Area of circumscribing rectangle = 68 X 26
= 1 768 square feet

/. coefficient = jiJH
= 0-895

If a vessel of similar form to the above has a breadth at
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the midship section of 59' 6" and a draught of 22' 9", the area

of its immersed midship section will be

59^ x 22! x 0^895 = 1213 square feet

The value of the midship section coefficient varies in

ordinary ships from about 0*85 to 0*95, the latter value being
for a section with very flat bottom.

Coefficient of Fineness of Water-plane. This is

the ratio between the area of the water-plane and its circum

scribing rectangle.

The value of this coefficient for the load water-plane may
be taken as follows :

For ships with fine ends 07
For ships of ordinary form 075
For ships with bluff ends ... ... O'85

Block Coefficient of Fineness of Displacement.
This is the ratio of the volume of displacement to the volume

of a block having the same length between perpendiculars,

extreme breadth, and mean draught as the vessel. The

draught should be taken from the top of keel.

Thus a vessel is 380 feet long, 75 feet broad, with 27' 6"

mean draught, and 14,150 tons displacement. What is its

block coefficient of fineness or displacement ?

Volume of displacement = 14,150 x 35 cubic feet

Volume of circumscribing solid = 380 X 75 X 27-^ cubic feet

.'. coefficient of fineness of) 14150x35
displacement f

~
380 X 75 X 27-!

= '

6 3

This coefficient gives a very good indication of the fineness

of the underwater portion of a vessel, and can be calculated

and tabulated for vessels with known speeds. Then, if in the

early stages of a design we have the desired dimensions given,

with the speed required, we can select the coefficient of fineness

which appears most suitable for the vessel, and so determine

very quickly the displacement that can be obtained under the

conditions given.
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Example. A vessel has to be 400 feet long, 42 feet beam, 17 feet draught,
and 13\ knots speed. What would be the probable displacement?

From available data, it would appear that a block coefficient of fineness

of 0*625 would be desirable. Consequently the displacement would be

(400 X 42 X 17 X 0-625) -*- 35 tons = 5ioo tons about

The following may be taken as average values of the block

coefficient of fineness of displacement in various types of

ships :

Recent battleships ... ... '6o-'65
Recent fast cruisers ... ... '5o-'55
Fast mail steamers ... ... '5o-'55

Ordinary steamships ... ... 'SS~'^S

Cargo steamers ... ... '65-'80

Sailing vessels ... ... ... '65-75
Steam-yachts ... ... ... '35~'45

Prismatic Coefficient of Fineness of Displace-
ment. This coefficient is often used as a criterion of the

fineness of the underwater portion of a vessel. It is the ratio

between the volume of displacement and the volume of a

prismatic solid the same length between perpendiculars as the

vessel, and having a constant cross-section equal in area to the

immersed midship section.

Example. A vessel is 300 feet long, 2100 tons displacement, and has

the area of her immersed midship section 425 square feet. What is her

prismatic coefficient of fineness ?

Volume of displacement = 2100 X 35 cubic feet

Volume of prismatic solid = 300 X 425
_ . 2100 x 35

. . coefficient =
300x425

= Q'577

Difference in Draught of Water when floating
in Sea Water and when floating in River Water.

Sea water is denser than river water
; that is to say, a given

volume of sea water say a cubic foot weighs more than the

same volume of river water. In consequence of this, a vessel,

on passing from the river to the sea, if she maintains the same

weight, will rise in the water, and have a greater freeboard

than when she started. Sea water weighs 64 Ibs. to the cubic

foot, and the water in a river such as the Thames may be

taken as weighing 63 Ibs. to the cubic foot. In Fig. 21, let

the right-hand portion represent the ship floating in river water.



Areas, Volumes, Weights, Displacement, etc. 31

and the left-hand portion represent the ship floating in salt

water. The difference between the two water-planes will be

the amount the ship will rise on passing into sea water.

i
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This may be put in another way. A ship, if floating in salt

water, will weigh -^ less than if floating to the same water-line

in river water. Thus, ifW is the weight of the ship floating at a

given line in salt water, her weight if floating at the same line

in fresh water is

eVw less

and this must be the weight of the layer of displacement
between the salt-water line and the river-water line for a given

weight W of the ship. If T be the tons per inch for salt water,

the tons per inch for fresh water will be ffT. Therefore the

difference in draught will be

W
inches, as above

Sinkage caused by a Central Compartment of a

Vessel being open to the Sea. Take the simple case of a

box-shaped vessel, ABCD, Fig. 22, floating at the water-line WL.

A. E.

w.

G.

N. U

F H. C
FIG. 22.

This vessel has two water-tight athwartship bulkheads in the

middle portion, EF and GH. A hole is made in the bottom or

side below water somewhere between these bulkheads. We
will take a definite case, and work it out in detail to illustrate

the principles involved in such a problem.

Length of box-shaped vessel

Breadth

Depth ,, ,,

Draught ,, ,,

Distance of bulkheads apart

100 feet.

20 ,,

20 ,,

10 .,

20 ,

If the vessel is assumed to be floating in salt water, its

weight must be

ioo X 20 X io _ 20000
- --

5r>: tons
35
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Now, this weight remains the same after the bilging as

before, but the buoyancy has been diminished by the opening
of the compartment KPHF to the sea. This lost buoyancy
must be made up by the vessel sinking in the water until the

volume of displacement is the same as it originally was.

Suppose W'L' to be the new water-line, then the new volume of

displacement is given by the addition of the volumes ofW'MFD
and NL'CH, or, calling d the new draught of water in feet

(40 X 20 x d)+ (40 x 20 X</) = i6oo</cubic feet

The original volume of displacement was

100 x 20 X 10 = 20,000 cubic feet

/. 1600 d = 20,000

.-. </=iap=i2'6"

that is, the new draught of water is 12' 6", or the vessel will

sink a distance of 2' 6".

The problem may be looked at from another point of view.

The lost buoyancy is 20 x 20 x 10 cubic feet = 4000 cubic

feet; this has to be made up by the volumes W'MKW and

NL'LP, or the area of the intact water-plane multiplied by
the increase in draught. Calling x the increase in draught, we
shall have

80 x 20 x x = 4000
4000 -\_ r

^* 1600 ^2 lccl

= 2' 6"

which is the same result as was obtained above.

If the bilged compartment contains stores, etc., the amount

of water which enters from the sea will be less than if the com-

partment were quite empty. The volume of the lost displace-

ment will then be given by the volume of the compartment up
to the original water-line less the volume occupied by the

stores.

Thus, suppose the compartment bilged in the above

example to contain coal, stowed so that 44 cubic feet of it will

weigh one ton, the weight of the solid coal being taken at

80 Ibs. to the cubic foot.

D
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i cubic foot of coal, if solid, weighs 80 Ibs.

i as stowed -^ff- =51 Ibs.

Therefore in every cubic foot of the compartment there is

- cubic feet solid coal
29
80 space into which water will find its way

The lost buoyancy is therefore

ff- X 4000 =1450 cubic feet

The area of the intact water-plane will also be affected in

the same way ;
the portion of the water-plane between the bulk-

heads will contribute

1^X20X20 = 255 square feet to the area

The area of the intact waterplane is therefore

1600 + 255 =185 5 square feet

The sinkage in feet is therefore

||ff=o-78, or 9- 3 6 inches

In the case of a ship the same principles apply, supposing

the compartment to be a central one, and we have

Sinkage of vessel ) _ volume of lost buoyancy in cubic feet

in feet I area of intact water-plane in square feet

In the case of a compartment bilged which is not in the

middle of the length, change of the trim occurs. The method

of calculating this for any given case will be dealt with in

Chapter IV.

In the above example, if the transverse bulkheads EF and

GH had stopped just below the new water-line W'L', it is

evident that the water would flow over their tops, and the

vessel would sink. But if the tops were connected by a water-

tight flat, the water would then be confined to the space, and

the vessel would remain afloat.
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Velocity of Inflow of Water into a Vessel on

Bilging.
Let A = area of the hole in square feet

;

d = the distance the centre of the hole below the

surface in feet ;

v = initial rate of inflow of the water in feet per

second.

Then v = %Jd nearly

and consequently the volume of water
)

passing through the hole per second j

X A cub. ft.

Thus, if a hole 2 square feet in area, 4 feet below the water-

line, were made in the side of a vessel, the amount of water,

approximately, that would flow into the vessel would be as

follows :

Cubic feet per second = 8 x V4 X 2

= 32
Cubic feet per minute = 32 x 60

Tons of water per minute = -
35

Weights of Materials. The following table gives

average weights which may be used in calculating the weights
of materials employed in shipbuilding :

foot.Steel
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It follows, from the weights per cubic foot of iron and
steel given above, that an iron plate i inch thick weighs 40 Ibs.

per square foot, and a steel plate i inch thick weighs 40-8 Ibs.

per square foot.

The weight per square foot may be obtained for other

thicknesses from these values, and we have the following :

Weight per square foot in
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EXAMPLES TO CHAPTER I.

What is its weight if its

Ans. 95 Ibs.

1. A plate has the form shown in Fig. 23.

weight per square foot is 10 Ibs. ?

2. The material of an
armour plate weighs 490 Ibs.

a cubic foot. A certain

plate is ordered 400 Ibs. per

square foot : what is its

thickness ?

Ans. 9
-8 inches.

3. Steel armour plates,
as in the previous question,
are ordered 400 Ibs. per

square foot instead of 10

inches thick. What is the

saving of weight per loo

square feet of surface of this

armour ?

Ans. 833 Ibs., or 0^37 ton.

4. An iron plate is of the dimensions shown in Fig. 24. What is its area ?

If two lightening holes 2' 3" in diameter are cut in it, what will its

area then be ? ,

Ans. 33! square feet
;

|

25 '8 square feet.

5. A hollow pillar is 4 inches

external diameter and
j{

inch

thick. What is its sectional A
area, and what would be the /

\

weight in pounds of 10 feet of / [

this pillar if made of wrought f~"
iron ?

rj'""*!
Ans. 4-27 square inches

; |

I

*42 Ibs. FlG . 24 .

6. A steel plate is of the

form and dimensions shown in Fig. 25. What is its weight ? (A steel plate

jj
inch thick weighs 25*5 Ibs. per square foot.)

Ans. 1267 Ibs.

I

h F
i *!

i

FIG. 25.

7. A wrought-iron armour plate is 15' 3" long, 3' 6" wide, and4 inches

thick. Calculate its weight in tons.

Ans. 4-29 tons.
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8. A solid pillar of iron of circular section is 6' 10" long and 2\ inches

in diameter. What is its weight ?

Ans. 90^ Ibs.

9. A Dantzic fir deck plank is 22 feet long and 4 inches thick, and

tapers in width from 9 inches at one end to 6 inches at the other. What is

its weight ?

Ans. 165 Ibs.

10. A solid pillar of iron is 7' 3" long and 2f inches diameter. What
is its weight ?

Ans. 143 Ibs.

11. The total area of the deck plan of a vessel is 4500 square feet.

What would be the surface of deck plank to be worked, if there are

4 hatchways, each 4' X 2\'
2 ,, ,, 10' X 6'

and two circular skylights, each 4 feet in diameter, over which no plank is

to be laid ?

Ans. 43I4'86 square feet.

12. A pipe is 6 inches diameter inside. How many cubic feet of water
will a length of loo feet of this pipe contain ?

Ans. 19 '6 cubic feet.

13. A mast 90 feet in length and 3 feet external diameter, is composed of

20 Ib. plating worked flush-jointed on three T-bars, each 5" X 3" X I5^1bs.

per foot. Estimate the weight, omitting straps, and rivet heads.

Ans. 9! tons nearly.

14. A curve has the following ordinates, i' 4" apart : IO'86, I3'53, 14*58,

15*05, 1 5 '24, 1 5 '28, 1 5 '22 feet respectively. Draw this curve, and find

its area

(1) By Simpson's first rule
;

(2) By Simpson's second rule.

Ans. (i) n6'O7 square feet; (2) n6'O3 square feet.

15. The semi-ordinates in feet of a vessel's midship section, starting
from the load water-line, are 26'6, 26*8, 26'8, 26-4, 25-4, 23-4, and i8'5 feet

respectively, the ordinates being 3 feet apart. Below the lowest .ordinate

there is an area for one side of the section of 24*6 square feet. Find the

area of the midship section, using
1 I ) Simpson's first rule ;

(2) Simpson's second rule.

Ans. (i) 961 square feet ; (2) 9607 square feet.

16. The internal dimensions of a tank for holding fresh water are

8' o" x 3' 6" X 2' 6". How many tons of water will it contain ?

Ans. i '94.

17. The /^//"-ordinates of a deck plan in feet are respectively ij, 5^,

loj, I3J, I4f, 14^, 12^, 9, and 3^, and the length of the plan is 128 feet.

Find the area of the deck plan in square yards.
Ans. 296.

1 8. Referring to the previous question, find the area in square feet of the

portion of the plan between the ordinates \\ and 5$.
Ans. 1067.

19. The half-ordinates of the midship section of a vessel are 22-3, 22'2,

217, 2O'6, 17*2, 13*2, and 8 feet in length respectively. The common
interval between consecutive ordinates is 3 feet between the first and fifth

ordinates, and i' 6" between the fifth and seventh. Calculate the total area

of the section in square feet.

Ans. 586 '2 square feet.
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20. Obtain the total area included between the first and fourth ordinates
of the section given in the preceding question.

Ans. 392
-8 square feet.

21. The semi-ordinates of the load water-plane of a vessel are 0*2, 3-6,

7-4, 10, n, 107, 9-3, 6'5, and 2 feet respectively, and they are 15 feet

apart. What is the area of the load water-plane ?

Ans. 1808 square feet.

22. Referring to the previous question, what weight must be taken out
of the vessel to lighten her 3^ inches ?

What additional immersion would result by placing 5 tons on board ?

Ans. 15 tons ; I'l6 inch.

23. The "tons per inch immersion" of a vessel when floating in salt

water at a certain water-plane is 44-5. What is the area of this plane?
Ans. 18,690 square feet.

24. A curvilinear area has ordinates 3 feet apart of length 97, lo'o, and
1 3 '3 feet respectively. Find

(1) The area between the first and second ordinates.

(2) The area between the second and third ordinates.

(3) Check the addition of these results by finding the area of the whole

figure by Simpson's first rule.

25. Assuming the truth of the five-eight rule for finding the area between
two consecutive ordinates of a curve, prove the truth of the rule known as

Simpson's first rule.

26. A curvilinear area has the following ordinates at equidistant intervals

of 18 feet : 6'2O, 13-80, 21-90, 26-40, 22-35, I4'7> an i 7'35 feet -

Assuming that Simpson's first rule is correct, find the percentage of error

that would be involved by using
1 I ) The trapezoidal rule ;

(2) Simpson's second rule.

Ans. (i) i '2 per cent. ; (2) 0-4 per cent.

27. A compartment for containing fresh water has a mean section of

the form shown in Fig. 26. The length r

of the compartment is 12 feet. How many 8-8.

tons of water will it contain ?

Ans. 17 tons.

28. A compartment 20 feet long, 20
feet broad, and 8J feet deep, has to be
lined with teak 3 inches in thickness.

Estimate the amount of teak required in

cubic feet, and in tons.

Ans. 365 cubic feet ;
8'i tons.

29. The areas of the water-line sec-

tions of a vessel in square feet are re-

spectively 2000, 2000, 1600, 1250, and

300. The common interval between them
is ij foot. Find the displacement of the

vessel in tons in salt water, neglecting the

small portion below the lowest water-line FIG. 26.

section.

Ans. 264% tons.

30. A series of areas, 17' 6" apart, contain 0-94, 2-08, 3-74, 5*33, 8-27,
12-14, 16-96, 21-82, 24-68, 24-66, 22-56, 17-90, I2'66, 8-40, 5-69, 3-73,
2'6l, 2'o6, o square feet respectively. Find the volume of which the above
are the sectional areas.

Ans. 3429 cubic feet.
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31. Show how to estimate the change in the mean draught of a vessel in

going from salt to river water, and vice versd.

A vessel floats at a certain draught in river water, and when floating in

sea water without any change in lading, it is found that an addition of 175
tons is required to bring the vessel to the same draught as in river water.

What is the displacement after the addition of the weight named ?

Arts. 11,200 tons.

32. The vertical sections of a vessel IO feet apart have the following
areas : 10, 50, 60, 70, 50, 40, 20 square feet. Find the volume of displace-

ment, and the displacement in tons in salt and fresh water.

Ans. 2966 cubic feet
; 84/7 tons, 82-4 tons.

33. A cylinder is 500 feet long, 20 feet diameter, and floats with the

axis in the water-line. Find its weight when floating thus in salt water.

What weight should be taken out in order that the cylinder should float

with its axis in the surface if placed into fresh water ?

Ans. 2244 tons
;
62 tons.

34. A vessel is 500 feet long, 60 feet broad, and floats at a mean draught
of 25 feet when in salt water. Make an approximation to her draught
when she passes into river water. (Coefficient ofdisplacement, 0*5 ; coefficient

of L.W.P., 0-6.)

Ans. 25' 4".

35. A piece of teak is 20 feet long, 4} inches thick, and its breadth

tapers from 12 inches at one end to 9 inches at the other end. What is its

weight, and how many cubic feet of water would it displace if placed into

fresh water (36 cubic feet to the ton) ?

Ans. 328 Ibs. ; 5! cubic feet nearly.

36. The area of a water-plane is 5443 square feet. Find the tons per
inch immersion. Supposing 40 tons placed on board, how much would the

vessel sink ?

State any slight error that may be involved in any assumption made. If

40 tons were taken out, would the vessel rise the same amount ? What
further information would you require to give a more accurate answer ?

Ans. 12-96 tons; 3' I inches nearly.

37. Bilge keels are to be fitted to a ship whose tons per inch' are 48.
The estimated weight of the bilge keels is 36 tons, and the volume they

occupy is 840 cubic feet. What will be the increase of draught due to

fitting these bilge keels ?

Ans. \ inch.

38. The tons per inch of a vessel at water-lines 2 feet apart are I9'45,

l8'5i, I7'25, 15-6, 13-55, 10-87, and 6-52, the lowest water-line being 18

inches above the underside of flat keel. Draw the curve of tons per inch

immersion to scale, and estimate the number of tons necessary to sink the

vessel from a draught of 12 feet to a draught of 13' 6".

Ans. 344 tons.

39. The steamship Umlria is 500 feet long, 57 feet broad, 22' 6"

draught, 9860 tons displacement, 1150 square feet area of immersed midship
section. Find

(1) Block coefficient of displacement.
(2) Prismatic ,, ,,

(3) Midship-section coefficient.

Ans. (1)0-538; (2)0-6; (3)0-896.

40. The steamship Orient is 445 feet long, 46 feet broad, 21' 4^" draught
mean ; the midship section coefficient is O'9i9, the block coefficient of dis-

placement is 0*621. Find
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(1) Displacement in tons.

(2) Area of immersed midship section.

(3) Prismatic coefficient of displacement.
Ans. (l) 7763 tons ; (2) 904 square feet ; (3) 0-675.

41. A vessel is 144 feet long, 22' 6" broad, 9 feet draught ; displacement,

334 tons salt water ; area of midship section, 124 square feet. Find

1 I ) Block coefficient of displacement.
(2) Prismatic ,, ,,

(3) Midship-section coefficient.

Ans. (i) 0-4; (2) 0-655 ; (2) 0-612.

42. Find the displacement in tons in salt water, area of the immersed

midship section, prismatic coefficient of displacement, having given the

following particulars : Length, 168 feet ; breadth, 25 feet ; draught, 10' 6" ;

midship-section coefficient, 0^87 ; block coefficient of displacement, 0-595.
Ans. 750 tons ; 228-5 square feet ; o'685.

43. A vessel in the form of a box, 100 feet long, 10 feet broad, and 20
feet depth, floats at a draught of 5 feet. Find the draught if a central

compartment 10 feet long is bilged below water.
Ans. 5' 6|".

44. In a given ship, pillars in the hold can be either solid iron 4! inches

diameter, or hollow iron 6 inches diameter and half inch thick. Find the

saving in weight for every 100 feet length of these pillars, if hollow pillars
are adopted instead of solid, neglecting the effect of the solid heads and
heels of the hollow pillars.

Ans. 1-35 ton.

45. What is the solid contents of a tree whose girth (circumference) is

60 inches, and length is 18 feet?

Ans. 35 '8 cubic feet nearly.

46. A portion of a cylindrical steel stem shaft casing is I2f feet long,
\\ inch thick, and its external diameter is 14 inches. Find its weight in

pounds.
Ans. 2170 Ibs.

47- A floating body has a water-plane whose semi-ordinates 25 feet

apart are 0-3, 8, 12, 10, 2 feet respectively, and every square station is in

the form of a circle with its centre in the water-plane. Find the volume of

displacement (ir
= -2

7?).

Ans. 12,414 cubic feet.

48. A quadrant of 16 feet radius is divided by means of ordinates parallel
to one radius, and the following distances away : 4, 8, 10, 12, 13, 14, 15
feet respectively. The lengths of these ordinates are found to be 15*49,
13-86, 12-49, lo'$8> 9'33, 775, and 5-57 feet respectively. Find

(1) The exact area to two places of decimals.

(2) The area by using only ordinates 4 feet apart.
(3) The area by using also the half-ordinates.

(4) The area by using all the ordinates given above.

(5) The area as accurately as it is possible, supposing the ordinate 12*49
had not been given.

Ans. (i) 201-06; (2) I97'33; (3) 19975 J (4) 200-59; (5) 200-50.
49. A cylindrical vessel 50 feet long and 16 feet diameter floats at a

constant draught of 12 feet in salt water. Using the information given in

the previous question, find the displacement in tons.

Ans. 231 tons nearly.
50. A bunker 24 feet long has a mean section of the form of a trapezoid,

with length of parallel sides 3 feet and 4
-8 feet, and distance between them

10-5 feet. Find the number of tons of coal contained in the bunker, assuming
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I ton to occupy 43 cubic feet. If the parallel sides are perpendicular to

one of the other sides, and the side 4/8 feet long is at the top of the section,

where will the top of 17 tons of coal be, supposing it to be evenly
distributed ?

(This latter part should be done by a process of trial and error. )

Ans. 22-8 tons ; 2' 3" below the top.

51. The sections of a ship are 20 feet apart. A coal-bunker extends

from 9 feet abaft No. 8 section to I foot abaft No. 15 section, the total

length of the bunker thus being 132 feet. The areas of sections of the

bunker at Nos. 8, n, and 15 are found to be 126, 177, and 145 square
feet respectively. With this information given, estimate the capacity of the

bunker, assuming 44 cubic feet of coal to go to the ton. Stations numbered
from forward.

Ans. 495 tons.

52. The tons per inch immersion at water-lines 2 feet apart are i8
-

O9,

i6'8o, I5'i5, I3I5, io'49, and 6'48. The draught of water to the top
water-line is il' 6", and below the lowest water-line there is a displacement
of 75*3 tons. Find the displacement in tons, and construct a curve of

displacement.
Ans. 1712 tons.

53. A tube 35 feet long, 16 feet diameter, closed at the ends, floats in

salt water with its axis in the surface. Find approximately the thickness of

the tube, supposed to be of iron, neglecting the weight of the ends.

Ans. 0*27 foot.

54. Find the floating power of a topmast, length 64 feet, mean diameter

21 inches, the wood of the topmast weighing 36 Ibs. per cubic foot.

(The floating power of a spar is the weight it will sustain, and this is

the difference between its own weight and that of the water it
displaces.

In constructing a raft, it has to be borne in mind that all the weight of

human beings is to be placed on it, and that a great quantity of provisions
and water may be safely carried under it. For instance, a cask of beef

slung beneath would be 116 Ibs., above 300 Ibs. See " Sailor's Pocket-

book," by Admiral Bedford.)
Ans. 4310 Ibs.



CHAPTER II.

MOMENTS, CENTRE OF GRAVITY, CENTRE OF BUOY-
ANCY, DISPLACEMENT TABLE, PLANIMETER, ETC.

Principle of Moments. The moment of a force about

any given line is the product of the force into the perpen-

dicular distance of its line of action from that line. It may
also be regarded as the tendency to turn about the line. A
man pushes at the end of a capstan bar (as Fig. 27) with a

FIG. 27.

certain force. The tendency of the capstan to turn about its

axis is given by the force exerted by the man multiplied by
his distance from the centre of the capstan, and this is the

moment of the force about the axis. If P is the force exerted

by the man in pounds (see Fig. 27), and d\& his distance from

the axis in feet, then

The moment about the axis = P X d foot-lbs.

The same moment can be obtained by a smaller force with

a larger leverage, or a larger force with a smaller leverage, and

the moment can be increased :

(1) By increasing the force;

(2) By increasing the distance of the force from the axis.
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If, in addition, there is another man helping the first man,

exerting a force of F Ibs. at a distance from the axis of d'

feet, the total moment about the axis is

(P x d) +(P'x Ofoot-lbs.

We must now distinguish between moments tending to turn

one way and those tending to turn in the opposite direction.

Thus, in the above case, we may take a rope being wound
on to the drum of the capstan, hauling a weight W Ibs. If the

radius of the drum be a feet, then the rope tends to turn the

capstan in the opposite direction to the men, and the moment
about the axis is given by

W x a foot-lbs.

If the weight is just balanced, then there is no tendency to

turn, and hence no moment about the axis of the capstan, and

leaving out of account all consideration of friction, we have

(P X d) + (P' X d')
= W X a

The most common forces we have to deal with are those

caused by gravity, or the attraction of bodies to the earth. This

is known as their weight, and the direction of these forces must

all be parallel at any given place. If we have a number of

weights, W,, W2 ,
and W3 ,

on a beam at A, B, and C (Fig. 28),

^a rh n

t
w.

FIG. 28.

whose end is fixed at O, the moment of these weights about O
is given by

(Wx X AO) + (W2 x BO) + (W3 X CO)

This gives the tendency of the beam to turn about O, due to
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the weights W1}
W2 ,

and W3 placed upon it, and the beam must

be strong enough at O in order to resist this tendency, or, as

it is termed, the bending moment. Now, we can evidently

place a single weight W, equal to the sum of the weights

Wj, W2,
andW3 ,

at some point on the beam so that its moment
about O shall be the same as that due to the three weights.

If P be this point, then we must have

W x OP = (Wx X OA) + (W2 x OB) + (W3 X OC)
or, since W = Wl + W2 + W3

OP = OYLXjOA) + (Wa X OB) + (W3 X OC)
W, + W2 4- W3

Example. Four weights, 30, 40, 5) 60 Ibs. respectively, are placed
on a beam fixed at one end, O, at distances from O of 3, 4, 5, 6 feet respec-

tively. Find the bending moment at O, and also the position of a single

weight equal to the four weights which will give the same bending moment.

Bending moment at O = (30 X 3) + (40 X 4) + (5 X 5) + (60 X 6)
= 90 + 160 + 250 + 360
= 860 foot-lbs.

Total weight = 180 Ibs.

.'. position of single weight = ffg
= 4$ feet from O

Centre of Gravity. The single weight W above, when

placed at P, has the same effect on the beam at O and at

any other point of the beam, as the three weights Wj,W2 ,
and

W3. The point P is termed the centre ofgravity of the weights

Wj, W2 ,
and W3 . Thus we may define the centre of gravity

of a number of weights as follows :

The centre of gravity of a system of weights is that point
at which we may regard the whole system as being concentrated,

and at which the same effect is produced as by the original system

of weights.

This definition will apply to the case of a solid body, since

we may regard it as composed of a very large number of small

particles, each of which has a definite weight and occupies a

definite position. A homogeneous solid has the same density

throughout its volume
;
and all the solids with which we have

to deal are taken as homogeneous unless otherwise specified.

It follows, from the above definition of the centre of

gravity, that if a body is suspended at its centre of gravity,
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it would be perfectly balanced and have no tendency to move

away from any position in which it might be placed.

To Find the Position of the Centre of Gravity
of a number of Weights lying in a Plane. Two lines

are drawn in the plane at right angles, and the moment of the

system of weights is found successively about each of these

lines. The total weight being known, the distance of the

centre of gravity from each of these lines is found, and conse-

quently the position of the centre of gravity definitely fixed.

FIG. 29.

The following example will illustrate the principles in-

volved : Four weights, of 15, 3, 10, and 5 Ibs. respectively,

are lying on a table in definite positions as shown in Fig. 29.

Find the position of the centre of gravity of these weights.

(If the legs of the table were removed, this would be the place

where we should attach a rope to the table in order that it

should remain horizontal, the weight of the table being

neglected.)
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Draw two lines, Ox, Oy, at right angles on the table in

any convenient position, and measure the distances of each of

the weights from Ox, Oy respectively: these distances are

indicated in the figure. The total weight is 33 Ibs. The
moment of the weights about Ox is

(15 X 7) + (3 X 3) + (10 X 5) + (5 X 1-5)
= 171*5 foot-lbs.

The distance of the centre of gravity from Ox = =
5*2 feet

33

If we draw a line AA a distance of 5*2 feet from Ox, the

centre of gravity of the weights must be somewhere in the

line AA.

Similarly, we take moments about Oy, finding that the

moment is 150 foot-lbs., and the distance of the centre of

gravity from Oy is

W = 4'25 feet

If we draw a line BB a distance of 4*55 feet from Oy, the

centre of gravity of the weights must be somewhere in the line

BB. The point G, where AA and BB meet, will be the centre

of gravity of the weights.

Centres of Gravity of Plane Areas. A plane area has

length and breadth, but no thickness, and in order to give a

definite meaning to what is termed its centre of gravity, the

area is supposed to be the surface of a thin lamina or plate of

homogeneous material of uniform thickness. With this sup-

position, the centre of gravity of a plane area is that point at

which it can be suspended and remain in equilibrium.

Centres of Gravity of Plane Figures.

Circle. The centre of gravity of a circle is obviously at

its centre.

Square and Rectangle. The centre of gravity of

either of these figures is at the point where the diagonals
intersect.

Rhombus and Rhomboid. The centre of gravity of

either of these figures is at the point where the diagonals
intersect.
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D
FIG. 30.

c.

Triangle. Take the triangle ABC, Fig. 30. Bisect any
two sides BC, AC in the points D and E. Join AD, BE. The

point G where these two lines intersect is the centre of gravity

of the triangle. It can be

proved that the point G is

situated so that DG is one-third

DA, and EG is one-third EB.
We therefore have the following

rules :

i. Bisect any two sides of
the triangle, and join t/ie points

thus obtained to the opposite angu-

lar points. Then the point in

which these two lines intersect is the centre ofgravity ofthe triangle.

2. Bisect any side of the triangle, and join tJie point thus

obtained with tJie opposite angular point. The centre of gravity

of the triangle will be on this line, and at a point at one-third its

length measuredfrom the bisected side.

Trapezium. Let ABCD, Fig. 31, be a trapezium. By

joining the corners A and C we can divide the figure into two

triangles, ADC, ABC. The centres of gravity, E and F, of

these triangles can be

found as indicated

above. Join EF. The
centre of gravity' of the

whole figure must be

somewhere in the line

EF. Again, join the

corners D and B, thus

dividing the figure into

B

two triangles ADB,
CDB. The centres of

these triangles can be found. The

D C
FIG. 31.

gravity, H and K, of

centre of gravity of the whole figure must be somewhere in the

line HK
;
therefore the point G, where the lines HK and EF

intersect, must be the centre of gravity of the trapezium.

The following is a more convenient method of finding the

centre of gravity of a trapezium.
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Let ABCD, Fig. 32, be a trapezium. Draw the diagonals

AC, BD, intersecting at E. In the figure CE is greater than

B

EA, and DE is greater than EB. Make CH = EA and DF
= EB. Join FH. Then the centre of gravity of the triangle

EFH will also be the centre of gravity of the trapezium ABCD.
(A useful exercise in drawing would be to take a trapezium

on a large scale and find its

centre of gravity by each of

the above methods. If the

drawing is accurately done, the

point should be in precisely

the same position as found by
each method.)

To find the Centre of

Gravity of a Plane Area

by Experiment. Draw out

the area on a piece of card-

board or stiff paper, and cut

out the shape. Then suspend
the cardboard as indicated in

Fig. 33, a small weight, W,
being allowed to hang plumb.
A line drawn behind the string AW must pass through the
centre of gravity. Mark on the cardboard two points on the

string, as A and B, and join. Then the centre of gravity must
lie on AB. Now suspend the cardboard by another point, C,
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as in Fig. 34, and draw the line CD immediately behind the

string of the plumb-bob W. Then also the centre of gravity

must lie on the line CD. Consequently it follows that the

point of intersection G of the

lines AB and CD must be the

centre of gravity of the given

area.

Example. Set out the section of

a beam on a piece of stiff paper, and
find by experiment the position of its

centre of gravity, the beam being formed
of a bulb plate 9 inches deep and

\ inch thick, having two angles on the

upper edge, each 3" X 3" X ".

Ans. 3 inches from the top.

Centres of Gravity of Solids

formed of Homogeneous
Material.

Sphere. The centre of

gravity of a sphere is at its centre.

Cylinder. The centre of

gravity of a cylinder is at one-

half its height from the base, on

the line joining the centres of

gravity of the ends.

Pyramid or Cone. The centre of gravity of a pyramid
or cone is at one- fourth the height of the apex from the base,

on the line joining the centre of gravity of the base to the

apex.

Moment of an Area,

The geometrical moment of a plane area relatively to *

given axis, is the product of its area into the perpendicular

distance of its centre of gravity from the given axis. It follows

that the position of the centre of gravity is known relatively to

the given axis if we know the geometrical moment about the

axis and also the area, for the distance will be the moment
divided by the area. It is usual to speak of the moment of an-
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area about a given axis when the geometrical moment is really

meant.

To find the Position of the Centre of Gravity of

a Curvilinear Area with respect to one of its Ordi-

nates. Let AEDO, Fig. 35, be a plane curvilinear area, and

we wish to find its centre of gravity with respect to the end

ordinate, OA. To do this, we must first find the moment of

the total area about OA, and this divided by the area of the

figure itself will give the distance of the centre of gravity from

OA. Take any ordinate, PQ, a distance of x from OA, and

at PQ draw a strip A* wide. Then the area of the strip is

y X A* very nearly, and the moment of the strip about OA is

(y X &x)x very nearly.

If now &x be made indefinitely small, the moment of the

strip about OA will be

y . x . dx

Now, we can imagine the whole area divided up into such

strips, and if we added up the moments about OA of all such

strips, we should obtain the total moment about OA. Therefore,

using the notation we employed for finding the area of a plane
curvilinear figure on p. 14, we shall have

Moment of the total area about OA = fy . x . dx

The expression for the area is
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and this is of the same form as the expression for the moment.

Therefore, instead of y we put yx through Simpson's rule in

the ordinary way, and the result will be the moment about OA.
Set off on BC a length BF = BC X /*, and on DE a length

DG = DE X zh. Then draw through all such points a curve,

as OFG.1
Any ordinate of this curve will give the ordinate of

the original curve at that point multiplied by its distance from

OA. The area of an elementary strip of this new curve will be

y . x . dx, and the total area of the new curve will be fy . x . dx,
or the moment of the original figure about OA. Therefore, to

find the moment of a curvilinear figure about an end ordinate,

we take each ordinate and multiply it by its distance from the

end ordinate. These products, put through Simpson's rule in

the ordinary way, will give the moment of the figure about the

end ordinate. This moment divided by the area will give the

distance of the centre of gravity of the area from the end

ordinate.

Example. A midship section has semi-ordinates, l' 6" apart, com-

mencing at the L.W.L., of length 8 '60, 8'io, 6-95, 4-90, 275, 1-50, 070-
feet respectively. Find the area of the section and the distance of its C.G.

from the L.W.L.

Number of
ordinates.
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finding the moment of the area. In the fourth column we have

the functions of the ordinates, or the ordinates multiplied succes-

sively by their proper multipliers. In the fifth column is placed,

not the actual distance of each ordinate from the No. i ordi-

nate, but the number of intervals away, and the distance apart

is brought in at the end. In the sixth column the products of

the functions in column 4 and the multipliers in column 5 are

placed. It will be noticed that we have put the ordinates

through Simpson's multipliers first, and then multiplied by the

numbers in the fifth column after. This is the reverse to the

rule given in words above, which was put into that form in

order to bring out the principle involved more plainly. The
final result will, of course, be the same in either case, the

method adopted giving the result with the least amount of

labour, because column 4 is wanted for finding the area. The
sum of the products in column 6 will not be the moment

required, because it has to be multiplied as follows : First, by
one-third the common interval, and second, by the distance

apart of the ordinates.

The moment of the half-area )

u . *u T \\T-T t
= I 7S' 20 X (3 X *i) x Habout the L.W.L. 3

8/9

and the distance of the C.G. of the half-area from the L.W.L.

is

131*4
Moment -f area = - - = 3-03 feet

43'35

It will be noticed that we have multiplied both columns

4 and 6 by one-third the common interval, the distance of the

C.G. from No. i ordinate being obtained by

i75'2QX (JX 1-5) X 1-5

86-70 X (i X i'5)

The expression -| X 1*5 is common to both top and bottom,
and so can be cancelled out, and we have

175-20 x i'5

86-70
=-3'03 feet
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The position of the centre of gravity of the half-area with

regard to the L.W.L. is evidently the same as that of the whole

area.

When rinding the centre of gravity of a large area, such as

a water-plane of a vessel, it is usual to take moments about

the middle ordinate. This considerably simplifies the work,

because the multipliers in column 5 are not so large.

Example. The semi-ordinates of the load water-plane of a vessel 395
feet long are, commencing from forward, o, IO'2. aero, 27*4, 32'!, 34"O,

33'8, 317, 27-6, 20-6, 9-4. Find the area and the distance of its C.G.
from the middle ordinate.

In addition to the above, there is an appendage abaft the last ordinate,

having an area of 153 square feet, and whose C.G. is 5*6 feet abaft the last

ordinate. Taking this appendage into account, find the area and the

position of the C.G. of the water-plane.

Number of

ordinates.
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The total area will then be

19,276 + 153 = 19,429 square feet

To find the position of the C.G. of the whole water-plane, we take
moments about No. 6 ordinate, the distance of the C.G. of the appendage
from it being

X97'5 + 5'6 = 203-1 feet

Moment of main area abaft No. 6 ordinate = 19,276 X i6'Oi = 308,609
,, appendage ,, ,, =153x203-1=31-074
/. total moment abaft No. 6 ordinate = 308,609 + 31,074

= 339,683
and the distance of the centre of gravity \ _ 339683 _ f

of the whole area abaft No. 6 ordinate ]
~

19429
~ r 7'4 '

To find the Position of the Centre of Gravity of

a Curvilinear Area contained between Two Con-
secutive Ordinates with respect to the Near End
Ordinate. The rule investigated in the previous paragraph
for finding the centre of gravity of an area about its end ordi-

nate fails when applied to such a case as the above. For

instance, try the following example :

A curve has ordinates 10, 9, 7 feet long, 4 feet apart. To
find the position of the centre of gravity of the portion between

the two first ordinates with respect to the end ordinate.

Ordinates.
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remainder by one-twenty-fourth the sqiiare ofthe common interval.

Theproduct will be tfie moment about the end ordinate.

Using yi, y2, j3 ,
for the lengths of the ordinates, and h the

common interval, the moment of the portion between the

ordinates y\ and yz about the ordinate j>, is given by

/r

24

We will now apply this rule to the case considered above.

Ordinates.
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and regarding it as a rectangle, its centre of gravity is at a

distance of \y from the base. Therefore the moment of the

strip about the base is

iy
2 X A*

If now we consider the strip

to be indefinitely thin, its

moment about the base will

be

and the moment of the total ^
area about the base must be

the sum of the moments of all such strips, or

FIG. 36.

This expression for the moment is of the same form as that for

the area, viz. fy . dx. Therefore, instead of y we put ^y*
1

through Simpson's rule in the ordinary way, and the result will

be the moment of the curve about DC.

Example. An athwartship coal-bunker is 6 feet long in a fore-and-aft

direction. It is bounded at the sides by two longitudinal bulkheads 34 feet

apart, and by a horizontal line at the top. The bottom is formed by the

inner bottom of the ship, and is in the form of a curve having vertical

ordinates measured from the top of 12*5, I5'O, i6'O, 16-3, 16*4, 16-3, i6 -

o,

15*0, I2'5 feet respectively, the first and last ordinates being on the bulk-

heads. Find

1 i )
The number of tons of coal the bunker will hold.

(2) The distance of the centre of gravity of the coal from the top.
The inner bottom is symmetrical either side of the middle line, so we

need only deal with one side. The work is arranged as follows :

Ordinates.
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Common interval = 4*25 feet

Half-area of section = i86'i X \ X 4^25 square feet

Volume of bunker = i86'i X -- cubic feet

3
Number of tons of coal = i86'i X J]

= 72 tons

Moment of half-area below top = 2901 X X -
2 3

And distance of C.G. from the top =-
area

1 4'2 5
2901 X X J

= 7-8 feet

In the first three columns we proceed in the ordinary way
for finding the area. In the fourth column is placed, not the

half-squares, but the squares of the ordinates in column i,the

multiplication by -| being brought in at the end. These

squares are then put through Simpson's multipliers, and the

addition of column 6 will give a function of the moment of

the area about the base. This multiplied by \ and by the

common interval gives the actual moment. This moment
divided by the area gives the distance of the centre of gravity

we want. It will be noticed that \ the common interval

comes in top and bottom, so that we divide the function of the

moment 2901 by the function of the area i86'i, and then

multiply by \ to get the distance of centre of gravity required.

It is not often required in practice to find the centre of

gravity of an area with respect to its base, because most of the

areas we have to deal with are symmetrical either side of a

centre line (as water-planes), but the problem sometimes occurs,

the question above being an example.
To find the Position of the Centre of Gravity of

an Area bounded by a Curve and Two Radii. We
have already seen (p. 15) how to find the area of a figure such

as this. It is simply a step further to find the position of the

centre of gravity with reference to either of the bounding radii.

Let OAB, Fig. 13, be a figure bounded by a curve, AB, and

two bounding radii, OA, OB. Take any radius OP, the angle

BOP being called 6, and the length of OP being called r.
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Draw a consecutive radius, OP' ;
the angle POP' being indefi-

nitely small, we may call it dO. Using the assumptions we

have already employed in finding areas, the area POP' =

^r*.dd, POP' being regarded as a triangle. The centre of

gravity of POP' is at g, and Qg = f r, and gm is drawn perpen-

dicular to OB, and gm = fr. sin (see p. 87).

= \r . sin . dO

The moment of the whole figure about OB is the sum of

the moments of all such small areas as POP', or, using the

ordinary rotation

ijV.sin O.dO

This is precisely similar in form to the expression we found

for the area of such a figure as the above (see p. 15), viz.

so that, instead of putting j r2 through Simpson's rule, measuring
r at equidistant angular intervals, we put \r* . sin through
the rule in a similar way. This will be best illustrated by the

following example :

Example. Find the area and position of centre of gravity of a quadrant
of a circle with reference to one of its bounding radii, the radius being
10 feet.

We will divide the quadrant by radii 15 apart, and thus be able to use

Simpson's first rule.

.

1- w
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The circular measure of 180 = ir = 3-1416

/ i 3'i4i6 \
/. area = 1800 X \ X f

- X s-~
\

= 78-54 square feet

Moment of area about the first radius =11,452 X -X ( -x -

)o \ J /

therefore distance of centre of gravity from the first radius is

The exact distance of the centre of gravity of a quadrant

from either of its bounding radii is times the radius, and if

this is applied to the above example, it will be found that the

result is correct to two places of decimals, and would have

been more correct if we had put in the values of the sines of

the angles to a larger number of decimal places.

Centre of Gravity of a Solid Body which is

bounded by a Curved Surface and a Plane. In the

first chapter we saw that the finding the volume of such a solid

as this was similar in principle to the finding the area of a

plane curve, the only difference being that we substitute areas

for simple ordinates, and as a result get the volume required.

The operation of finding the centre of gravity of a volume in

relation to one of the dividing planes is precisely similar to the

operation of finding the centre of gravity of a curvilinear area

in relation to one of its ordinates. This will be illustrated by
the following example :

Example. A coal-bunker has sections 17' 6" apart, and the areas of

these sections, commencing from forward, are 98, 123, 137, 135, 122 square
feet respectively. Find the volume of the bunker, and the position of its

centre of gravity in a fore-and-aft direction.
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Areas.
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of each of these ships must necessarily be in the same position.

But suppose they are engaged in different trades the first,

say, carrying a cargo of steel rails and other heavy weights,

which are stowed low down. The second, we may suppose,

carries a cargo of homogeneous materials, and this has to be

stowed much higher than the cargo in the first vessel. It is

evident that the centre of gravity in the first vessel must be

much lower down than in the second, although as regards form

they are precisely similar. This distinction between the centre

of buoyancy and the centre of gravity is a very important

one, and should always be borne in mind.

To find the Position of the Centre of Buoyancy of

a Vessel in a Fore-and-aft Direction, having given
the Areas of Equidistant Transverse Sections. The

following example will illustrate the principles involved :

Example. The underwater portion of a vessel is divided by transverse

sections 10 feet apart of the following areas, commencing from forward : O'2,

22*7, 48*8, 73'2, 88'4, 82-8, 587, 26*2, 3^9 square feet respectively. Find

the position of the centre of buoyancy relative to the middle section.

Number of
station.
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The centre of gravity of a plane area is fully determined

when we know its position relative to two lines in the plane,

which are generally taken at right angles to one another. The
centre of gravity of a volume is fully determined when we

know its position relative to three planes, which are generally

taken at right angles to one another. In the case of the under-

water volume of a ship, we need only calculate the position of

its centre of gravity relative to (i) the load water-plane, and

(2) an athwartship section (usually the section amidships),

because, the two sides of the ship being identical, the centre

of gravity of the displacement must lie in the middle-line

longitudinal plane of the ship.

Approximate Position of the Centre of Buoyancy.
In vessels of ordinary form, it is found that the distance of the

centre of buoyancy below the L.W.L. varies from about -~ to -^
of the mean moulded draught, the latter being the case in

vessels of full form. For yachts and vessels of unusual form,

such a rule as this cannot be employed.

Example. A vessel 13' 3" mean draught has her C.B. 5-34 feet below
J~/ \V LJ

Here the proportion of the draught is

5 '34 8'o6^-^- = 0-403 =
13-25 20

This is an example of a fine vessel.

Example. A vessel 27' 6" mean draught has her C.B. 12-02 feet below
L.W.L.

Here the proportion of the draught is

12-02 _ 8-75

27-5
~~

20

This is an example of a fuller vessel than the first case.

Normand's Approximate Formula for the Distance
of the Centre of Buoyancy below the Load Water-

line. 1

Let V = volume of displacement up to the load-line in

cubic feet
;

A = the area of the load water-plane in square feet
;

d = the mean draught (to top of keel) in feet.

1 See a paper in Transactions of the Institution ofNaval Architects, by
Mr. S. W. F. Morrish, M.I.N.A., in 1892.
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Then centre of buoyancy below L.W.L. = i f - + -.-

This rule gives exceedingly good results for vessels of

ordinary form. In the early stages of a design the above

particulars would be known as some of the elements of the

design, and so the vertical position of the centre of buoyancy
can be located very nearly indeed. In cases in which the

stability of the vessel has to be approximated to, it is important
to know where the C.B. is, as will be seen later when we are

dealing with the question of stability.

The rule is based upon a very ingenious assumption, and

the proof is given in Appendix A, p. 249.

The Area of a Curve of Displacement divided by
the Load Displacement gives the Distance of the

Centre of Buoyancy below the Load Water-line. This

is an interesting property of the curve of displacement. A
demonstration of it will be found in Appendix A, p. 247.

Displacement Sheet. We now proceed to investigate

the method that is very generally employed in practice to find

the displacement of a vessel, and also the position of its centre

of buoyancy both in a longitudinal and a vertical direction.

The calculation is performed on what is termed a "
Displace-

ment Sheet" or "Displacement Table" and a specimen calcula-

tion is given at the end of the book for a single-screw tug of

the following dimensions :

Length between perpendiculars 75' o"

Breadth moulded 14' 6"

Depth moulded 8' 3"
Draught moulded forward 5' 5"

aft 6' 2"

>, ,, mean 5' 9$"

The sheer drawing of the vessel is given on Plate I. This

drawing consists of three portions the body plan, the half-

breadth plan, and the sheer. The sheer plan shows the ship

in side elevation, the load water-line being horizontal, and the

keel, in this case, sloping down from forward to aft. The ship

is supposed cut by a number of transverse vertical planes,

which are shown in the sheer plan as straight lines, numbered
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i, 2, 3, etc. Now, each of these transverse sections of the ship

has a definite shape, and the form of each half-section to the

outside of frames is shown in the body-plan, the sections being
numbered as in the sheer. The sections of the forward end

form what is termed the "fore-body" and those of the after

end the "
after-body" Again, the ship may be supposed to be

cut by a series of equidistant horizontal planes, of which the

load water-plane is one. The shape of the curve traced on each

of these planes by the moulded surface of the ship is given in

the half-breadth plan, and the curves are numbered A, i, 2, 3,

etc., to agree with the corresponding lines in the sheer and

body plan. Each of these plans must agree with the other

two. Take a special station, for example, No. 4. The breadth

of the ship at No. 4 station at the level of No. 3 water-plane is

Otf' in the body-plan, but it is also given in the half-breadth plan

by Oa, and therefore O# must exactly equal Od. The process

of making all such points correspond exactly is known as

"fairing." For full information as to the methods adopted in

fairing, the student is referred to the works on "
Laying-off

"

given below. 1 For purposes of reference, the dimensions of

the vessel and other particulars are placed at the top of the

displacement sheet. The water-lines are arranged on the

sheer drawing with a view to this calculation, and in this case

are spaced at an equidistant spacing apart of i foot, with an

intermediate water-line between Nos. 5 and 6. The number

of water-lines is such that Simpson's first rule can be used, and

the multipliers are, commencing with the load water-plane

142442!
The close spacing near the bottom is very necessary to

ensure accuracy, as the curvature of the midship sections of the

vessel is very sharp as the bottom is approached, and, as we
saw on p. 13, Simpson's rules cannot accurately deal with areas

such as these unless intermediate ordinates are introduced.

Below No. 6 water-plane there is a volume the depth of which

increases as we go aft, and the sections of this volume are very

1 "
Laying Off," by Mr. S. J. P. Thearle $ "Laying Off," by Mr. T. H.

Watson.

F
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nearly triangles. This volume is dealt with separately on the

left-hand side of the table, and is termed an "
appendage''

In order to find the volume of displacement between water-

planes i and 6, we can first determine the areas of the water-

planes, and then put these areas through Simpson's rule. To
find the area of any of the water-planes, we must proceed in

the ordinary manner and divide its length by ordinates so that

Simpson's rule (preferably the first rule) can be used. In the

case before us, the length is from the after-edge of the stem to

the forward edge of the body post, viz. 71 feet, and this

length is divided into ten equal parts, giving ordinates to each

of the water-planes at a distance apart of 7*1 feet. The dis-

placement-sheet is arranged so that we can put the lengths of

the semi-ordinates of the water-planes in the columns headed

respectively L.W.L., 2W.L., 3W.L., etc., the semi-ordinates at

the several stations being placed in the same line as the number

of ordinates given at the extreme left of the table. The lengths

of the semi-ordinates are shown in italics. Thus, for instance,

the lengths of the semi-ordinates of No. 3 W.L., as measured

off, are 0-05, 1-82, 4-05, 5-90, 6-90, 7*25, 7-04, 6-51, 5-35,

2*85, and 0*05 feet, commencing with the forward ordinate

No. i, and these are put down in italics
x as shown beneath

the heading 3 W.L. in the table. The columns under the

heading of each W.L. are divided into two, the semi-ordinates

being placed in the first column. In the second column of each

water-line is placed the product obtained by multiplying the

semi-ordinate by the corresponding multiplier to find the area.

These multipliers are placed at column 2 at the left, opposite

the numbers of the ordinates. We have, therefore, under the

heading of each water-line what we have termed the "functions

of ordinates" and if these functions are added up, we shall

obtain what we have termed the "
function ofarea"

Taking No. 3 W.L. as an instance, the "function
"
of its

area is 144*10, and to convert this "function" into the actual

area, we must multiply by one-third the common interval to

complete Simpson's first rule, i.e. by \ X 7*1 ; and also by 2

1 In practice, it is advisable to put down the lengths of the semi-

ordinates in some distinctive colour, such as red.
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to obtain the area of the water-plane on both sides of the ship.

We should thus obtain the area of No. 3 W.L.

144' 10 x^-X7'iX2 = 682-07 square feet

The functions of the area of each water-plane are placed at

the bottom of the columns, the figures being, starting with

the L.W.L., 16370, 155-36, 144-10, 12874, i5' 6 7> 87-27,

and 60*97. To get the actual areas of each of the water-planes,

we should, as above, multiply each of these functions by
~ x

7 'i x 2. Having the areas, we could proceed as on p. 20 to

find the volume of displacement between No. i and No. 6

water-lines, but we do not proceed quite in this way; we

put the "functions of areas" through Simpson's rule, and

multiply afterwards by \ x 7"i X 2, the same result being

obtained with much less work. Below the " functions of

areas
"
are placed the Simpson's multipliers, and the products

163*70, 621*44, etc., are obtained. These products added up

give 1951*83. This number is a function of the volume of

displacement, this volume being given by first multiplying it

by one-third the vertical interval, i.e. ^ x i
;
and then by

^ X 7" i X 2, as seen above. The volume of displacement
between No. i W.L. and No. 6 W.L. is therefore

1951-83 x ( X i) X ( X 7-1) X 2 = 3079-5 cubic feet

and the displacement in
} 3079-15

, N i

3 = 87-98 tons
tons (salt water)

x

35

We have thus found the displacement by dividing the

volume under water by a series of equidistant horizontal planes ;

but we could also find the displacement by dividing the under-

water volume by a series of equidistant vertical planes, as we
saw in Chapter I. This is done on the displacement sheet,

an excellent check being thus obtained on the accuracy of the

work. Take No. 4 section, for instance : its semi-ordinates,

commencing with the L.W.L., are 6*40, 6*24, 5*90, 5*32, 4*30,

3*40, and 2*25 feet. These ordinates are already put down

opposite No. 4 ordinate. If these are multiplied successively

by the multipliers, i, 4, 2, 4, i-, 2, i, and the sum of the

1

Thirty-five cubic feet of salt water taken to weigh one ton.
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functions of ordinates taken, we shall obtain the "function of

area" of No. 4 section between the L.W.L. and 6 W.L. This

is done in the table by placing the functions of ordinates

immediately below the corresponding ordinate, the multiplier

being given at the head of each column. We thus obtain a

series of horizontal rows, and these rows are added up, the

results being placed in the column headed " Function ofareas"

Each of these functions multiplied by one-third the common

interval, i.c. ^ X i, and then by 2 for both sides, will give

the areas of the transverse sections between the L.W.L. and

6 W. L.
; but, as before, this multiplication is left till the end

of the calculation. These functions of areas !are put through

Simpson's multipliers, the products being placed in the column

headed "Multiples ofareas" This column is added up, giving

the result 1951*83. To obtain the volume of displacement,

we multiply this by ( X i) X 2 x ( X 7*1). It will be noticed

that we obtain the number 1951-83 by using the horizontal

water-lines and the vertical sections
;
and this must evidently

be the case, because the displacement by either method must

be the same. The correspondence of these additions forms

the check, spoken of above, of the accuracy of the work. We
thus have the result that the volume of displacement from

L.W.L. to 6 W.L. is 3079*5 cubic feet, and the displacement

in tons of this portion 87*98 tons in salt water. This ie termed

the
" Main solid," and forms by far the greater portion of the

displacement.

AVe now have to consider the portion we have left out below

No. 6 water-plane. Such a volume as this is termed an
"
appendage." The sections of this appendage are given in the

body-plan at the several stations. The form of these sections

are traced off, and by the ordinary rules their areas .are found

in square feet. We have, therefore, this volume divided by a

series of equidistant planes the same as the main solid, and we
can put the areas of the sections through Simpson's rule and

obtain the volume. This calculation is done on the left-hand

side of the sheet, the areas being placed in column 3, and the

functions of the areas in column 4. The addition of these

functions is 49*99, and this multiplied by ^ x 7*1 gives the'
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volume of the appendage in cubic feet, viz. 118-3; and this

volume divided by 35 gives the number of tons the appendage

displaces in salt water, viz. 3*38 tons. The total displacement
is thus obtained by adding together the main solid and the

appendage, giving 91 '3 6 tons in salt water. The displacement
in fresh water (36 cubic feet to the ton) would be 88' 8 tons.

The sheer drawing for this vessel as given on Plate I. was

drawn to the frame line, i.e. to the moulded dimensions of the

ship ;
but the actual ship is fuller than this, because of the outer

bottom plating, and this plating will contribute a small amount

to the displacement, but this is often neglected. Some sheer

drawings, on the other hand, are drawn so that the lines include

a mean thickness of plating outside the frame line, and when

this is the case, the displacement sheet gives the actual dis-

placement, including the effect of the plating. For a sheathed

ship this is also true; in this latter case, the displacement

given by the sheathing would be too great to be neglected.

When the sheer drawing is drawn to the outside of sheathing,

or to a mean thickness of plating, it is evident that the ship

must be laid off on the mould loft floor, so that, when built,

she shall have the form given by the sheer drawing.

We now have to find the position of the centre of buoyancy
both in a fore-and-aft and in a vertical direction. (It must be

in the middle-line plane of the ship, since both sides are sym-

metrical.) Take first the fore-and-aft position. This is found

with reference to No. 6 station. The functions of the areas of

the sections are 0-55, 23*055, etc., and in the column headed
"
Multiples of areas

" we have these functions put through

Simpson's multipliers. We now multiply these multiples by
the number of intervals they respectively are from No. 6 station,

viz. 5, 4, etc., and thus obtain a column headed " Moments."

This column is added up for the fore body, giving 1505-43, and

for the after body, giving 1 913-02, the difference being 407-59
in favour of the after body. To get the actual moment of the

volume abaft No. 6 station, we should multiply this difference

by (-j X i) for the vertical direction, ( X 7*1) for the fore-and-

aft direction, and by 2 for both sides, and then by 7*1, since we
have only multiplied by the number of intervals away, and not
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by the actual distances, or 407^59 x (-j X i) X (^ X 7'i) X 2

X 7*1. The volume, as we have seen above, is given by

1951-83 X (Xi) X (|X 7'l) X 2

The distance of the centre of gravity of the main solid from

No. 6 station will be

Moment -4- volume

But on putting this down we shall see that we can cancel out,

leaving us with

4or5|xrx = 8fee

'

t

1951*83

which is the distance of the centre of gravity of the main solid

abaft No. 6 station. The distance of the centre of gravity of

the appendage abaft No. 6 station is 4'o feet
;
the working is

shown on the left-hand side of the table, and requires no further

explanation. These results for the main solid and for the

appendage are combined together at the bottom
;
the displace-

ment of each in tons is multiplied by the distance of its centre

of gravity abaft No. 6 station, giving the moments. The total

moment is 143*73, and the total displacement is 91 '36 tons,

and this gives the centre of gravity of the total displacement, or

what we term the centre of buoyancy > C.B., 1^57 feet abaft No.
6 station.

Now we have to consider the vertical position of the

C.B., and this is determined with reference to the load water-

line. For the main solid the process is precisely similar

to that adopted for finding the horizontal position, with the

exception that we take our moments all below the load water-

plane, the number of intervals being small compared with the

horizontal intervals. We obtain, as indicated on the sheet, the

centre of gravity of the main solid at a distance of 2' 21 feet

below the L.W.L. For the appendage, we proceed as shown

on the left-hand side of the sheet. When finding the areas of

the sections of the appendage, we spot off as nearly as possible

the centre of gravity of each section, and measure its distance

below No. 6 W.L. If the sections happen to be triangles, this will,

of course, be one-third the depth. These distances are placed in
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a column as shown, and the " functions of areas
"
are respec-

tively multiplied by them, e.g. for No. 4 station the function of

the area is 5*92, and this is multiplied by 0*22, the distance

of the centre of gravity of the section of the appendage below

No. 6 W.L. We thus obtain a column which, added up, gives

a total of 1 3' 7 8. To get the actual moment, we only have to

multiply this by \ x 7*1. The volume of the appendage is

49*99 x (^ X 7'i). So that the distance of the centre of

gravity of the whole appendage below No. 6 W.L. is given
T '"rS

by moment -4- volume, or = 0*27 feet, and therefore the
49'99

centre of gravity of the appendage is 5*27 feet below the

L.W.L. The results for the main solid and for the appendage
are combined together in the table at the bottom, giving the

final position of the C.B. of the whole displacement as 2^32

feet below the L.W.L.

It will be of interest at this stage to test the two approxi-

mations that were given on p. 63 for the distance of the C.B.

below the L.W.L. The first was that this distance would be

from -$ to
-^j-

of the mean draught to top of keel (i.e.
the mean

moulded draught). For this vessel the distance is 2*32 feet,

and the mean moulded draught is 5' 9^-", or 5-8 feet, and so

2*^2
we have the ratio

,
or exactly . The second approxi-

mation (Normand's), p. 63, was

All these are readily obtainable from the displacement sheet,

and if worked out its value is found to be 2^29 feet. This

agrees well with the actual result, 2*32 feet, the error being

3 in 232, or less than ii per cent.

For large vessels a precisely similar displacement-sheet is

prepared, but it is usual to add in the effect of other appen-

dages besides that below the lowest W.L. A specimen calcu-

lation is shown below. In this case the sheer drawing was

made to include a mean thickness of plating. The appendages
are
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Before fore perpendicular (ram bow).

Abaft after perpendicular.

Rudder.

Shaft-tubes, etc. (including propellers, shafts, swells, and

struts).

Bilge keels (if fitted).

The effect of these appendages, outside the naked hull, is to

increase the displacement by 61*5 tons, and to throw the C.B.

aft from 8^44 feet to 8'88 feet abaft the middle ordinate. The
effect on the vertical position of the C.B. is of very small

amount.

SUMMARY.

Item.
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curve. Let BFC, Fig. 37, be a curve bounding the figure

ABCD, and suppose the curve is a "parabola of the second

order" Draw the ordinate EF
D.

midway between AB and DC
;
then

the following is a property of the

curve BFC : the area of the seg-

ment BCF is given by two-thirds

the product of the deflection GF
and the base AD, or

Area BCF = f x GF X AD

Make GH = \ GF. Then-

Area BCF = GH x AD
E.

FIG. 37.

Now, the area of the trapezoid ABCD is given by
AD X EG, and consequently

The area ADCFB = AD x EH '

Thus, if we have a long curvilinear area, we can divide it up
as for Simpson's first rule, and set off on each of the inter-

mediate ordinates two-thirds the deflection of the curve above

or below the straight line joining the extremities of the dividing

ordinates. Then add together on a strip of paper all such

distances as EH right along, and the sum multiplied by the

1 This property may be used to prove the rule known as Simpson's
first rule. Call AB, EF, DC respectively jlt yv yz . Then we have

EG=- and FG =j's -EG

HG = i* -*-+

EH = EG + GH
_ />

"V

and calling AE =
/i, we have

Area ADCFB =
JO,

+ 4^ +y3 )

which is the same expression as given by Simpson's first rule.
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distance apart of the dividing ordinates, as AD, will give the

area required. Thus in Fig. 38, AB is divided into equal parts

FIG. 38.

as shown. D and E are joined, also E and C : MO is set

oft' = fHM, and NP is set off = |NK. Then-

Area ADEF = AF X GO
and area FECB = FB x LP

and the whole area ABCD = AF X (GO + LP)

We can represent the area ABCD by a length equal to

GO + LP on a convenient scale, if we remember that this length

has to be multiplied by AF to get the area. This principle can

be extended to finding the areas of longer figures, such as

water-planes, and we now proceed to show how the displacement

and centre of buoyancy of a ship can be determined by its use.

The assumption we made at starting is supposed to hold good
with all the curves we have to deal, i.e. that the portions

between the ordinates are supposed to be ''parabolas of the

second order'' This is also the assumption we make when

using Simpson's first rule for finding displacement in the ordi-

nary way.

Plate I. represents the ordinary sheer drawing of a vessel,

and the underwater portion is divided by the level water-planes

shown by the half-breadth plan. The areas of each of these

planes can be determined graphically as above described, the

area being represented by a certain length obtained by the

addition of all such lengths as GO, etc., Fig. 38, the interval
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being constant for all the water-planes. Let AB, Fig. 39, be

set vertically to represent the extreme moulded draught of the

vessel. Draw BC at right angles to AB, to represent on a

convenient scale the area of the L.W.L. obtained as above.

Similarly, DE, FG are set out to represent on the same scale

the areas of water-planes 2 and 3, and so on for each water-

plane. A curve drawn through all such points as C, E, and G

FIG. 39.

will give a " curve ofareas ofwater-planes? Now, the area of this

curve up to the L.W.L. gives us the volume of displacement up
to the L.W.L., as we have seen in Chapter I., and we can readily

find the area of the figure ABCEG by the graphic method, and

this area will give us the displacement up to the L.W.L.

Similarly, the area of ADEG will give the displacement up to

2 W.L., and so on. Therefore set off BL to represent on a

convenient scale the area of the figure ABCE, DK on the
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same scale to represent the area ADEG, and so on. Then
a curve drawn through all such points as L, K will give us a
"

cjtrve of displacement" and the ordinate of this curve at any

draught will give the displacement at that draught, BL being

the load displacement.

We now have to determine the distance of the centre

of buoyancy below the L.W.L., and to find this we must get

the moment of the displacement about the L.W.L. and

divide this by the volume of displacement below the L.W.L.

We now construct a curve, BPMA, such that the ordinate at

any draught represents the area of the water-plane at that

draught multiplied by the depth of the water-plane below the

L.W.L. Thus DP represents on a convenient scale the area

of No. 2 water-plane multiplied by DB, the distance below the

L.W.L. The ordinate of this curve at the L.W.L. must evi-

dently be zero. This curve is a curve of " moments of areas

of water-planes" about the L.W.L. The area of this curve up
to the L.W.L. will evidently be the moment of the load dis-

placement about the L.W.L., and thus the length BR is set out

to equal on a convenient scale the area of BPMA. Similarly,

DS is set out to represent, on the same scale, the area of

DPMA, and thus the moment of the displacement up to 2 W.L.

about the L.W.L. These areas are found graphically as in the

preceding cases. Thus a curve RSTA can be drawn in, and

BR-f- BL, or moment of load displacement about L.W.L. -4-

load displacement, gives us the depth of the centre of buoyancy
for the load displacement below the L.W.L.

Exactly the same course is pursued for finding the displace-

ment and the longitudinal position of the centre of buoyancy,

only in this case we use a curve of areas of transverse sections

instead of a curve of areas of water-planes, and we get the

moments of the transverse areas about the middle ordinate.

Fig. 40 gives the forms the various curves take for the fore

body. AA is the " curve of areas of transverse sections ;

" BB
is the

" curve of displacement
"
for the fore body, OB being the

displacement of the fore body. CC is the curve of " moments

of areas of transverse sections
"
about No. 6 ordinate

;
DD is

the curve of " moment of displacement
" about No. 6 ordinate,
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OD being the moment of the fore-body displacement about

No. 6 ordinate. Similar curves can be drawn for the after

body, and the difference of the moments of the fore and after

bodies divided by the load displacement will give the distance

of the centre of buoyancy forward or aft of No. 6 ordinate, as

the case may be. The total displacement must be the same as

found by the preceding method.

Method of finding Areas by Means of the Plani-

meter. This instrument is frequently employed to find the

area of plane curvilinear figures, and thus the volume of dis-

placement of a vessel can be determined. One form of the

instrument is shown in diagram by Fig. 41. It is supported at

three places : first, by a weighted pin, which is fixed in position

by being pressed into the paper; second, by a wheel, which

actuates a circular horizontal disc, the wheel and disc both

being graduated ;
and third, by a blunt pointer. The instru-

ment is placed on the drawing, the pin is fixed in a convenient

position, and the pointer is placed on a marked spot A on the

boundary of the curve of which the area is required. The

reading given by the wheel and disc is noted. On passing

round the boundary of the area with the pointer (the same way
as the hands of a clock) back to the starting-point, another

reading is obtained. The difference of the two readings is

proportional to the area of the figure, the multiplier required to

convert the difference into the area depending on the instru-

ment and on the scale to which the figure is drawn. Particu-

lars concerning the necessary multipliers are given with the

instrument
;
but it is a good practice to pass round figures of

known area to get accustomed to its use.
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By the use of the planimeter the volume of displacement of

a vessel can very readily be determined. The body plan is

taken, and the L.W.L. is marked on. The pointer of the in-

strument is then passed round each section in turn, up to the

L.W.L., the readings being tabulated. If the differences of the

readings were each multiplied by the proper multiplier, we

should obtain the area of each of the transverse sections, and

so, by direct application of Simpson's rules, we should find the

A/ POINTER.

FIG. 41.

required volume of displacement. Or we could put the actual

difference of readings through Simpson's multipliers, and

multiply at the end by the constant multiplier.

It is frequently the practice to shorten the process as

follows : The body-plan is arranged so that Simpson's first rule

will be used, i.e. an odd number of sections is employed.
The pointer is passed round the first and last sections, and

the reading is recorded. It is then passed round all the even

sections, 2, 4, 6, etc., and the reading is recorded. Finally,

it is passed round all the odd sections except the first and last,

viz. 3, 5, 7, etc., and the reading is put down. The differences

of the readings are found and put down in a column. The
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first difference is multiplied by i, the next difference is multi-

plied by 4, and the last by 2. The sum of these products is

then multiplied for Simpson's first rule, and then by the proper

multiplier for the instrument and scale used. The work can

conveniently be arranged thus :

Products.Numbers of
sections.
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"
functions of areas of vertical sections

"
are treated in the

ordinary displacement sheet.

Method of approximating to the Area of the

Wetted Surface 1

by "Kirk's" Analysis. The ship is

assumed to be represented by a block model, shaped as

shown in Fig. 42, formed of a parallel middle body and a

C. D.

k
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where L = length of ship ;

B' = breadth of model ;

D = mean draught.

Having found these particulars, the surface of the model

can be readily calculated.

Area of bottom = AG X B'

Area of both sides = 2(GH + 2AE) X mean draught

The surface of a model formed in this way approximates

very closely to the actual wetted surface of the vessel. It is

stated that in very fine ships the surface of the model exceeds

the actual wetted surface by about 8 per cent., for ordinary

steamers by about 3 per cent., and for full ships by 2 per cent.

By considering the above method, we may obtain an

approximate formula for the wetted surface

V
Area of bottom =

y.

Area of sides = zL'D

where L' is the length along ADCB. Then

Surface = 2L'D -f-

This gives rather too great a result, as seen above
;
and if

we take

V
Surface = 2LD + =:

we shall get the area of the wetted surface slightly in excess,

but this will allow for appendages, such as keels, etc.

Since V = k . LED, where k is the block coefficient of

displacement, we may write

Surface = 2LD + k . LB

Approximate Formulae for finding Wetted Surface.

Mr. Denny gives the following formula for the area of

wetted surface :
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i'7LD +
I)

which is seen to be very nearly that obtained above.

Mr. Taylor, in his work on "
Resistance and Propulsion

of Ships," gives the following formula :

15'6,/WL

where W is the displacement in tons.

Approximate Method of determining the Mean
Wetted Girth of Ships, given by Mr. A. Blechynden,
M.I.N.A. (Transactions of Institution of Naval Architects,

1888)

Let M = midship wetted girth measured on midship section in

feet;

L = length between perpendiculars in feet
;

V = volume of displacement in cubic feet
;

S = area of midship section in square feet
;

D = moulded draught in feet

V
c = prismatic coefficient of fineness = , ^ (see p. 30)

LJ X o

m = mean wetted girth in feet.

Then m = 0-95^! + 2(1
-

c)D

EXAMPLES TO CHAPTER II.

I . A ship has the following weights placed on board :

20 tons loo feet before amidships
45
15 40
60 50 feet abaft

40
3

80
no

Show that these weights will have the same effect on the trim of the ship
as a single weight of 210 tons placed 15! feet abaft amidships.

2. Six weights are placed on a drawing-board. The weights are 3, 4,

5, 6, 7, 8 Ibs. respectively. Their respective distances from one edge are

5, 4j, 4, 3i, 3, 2 feet respectively, and from the edge at right angles, , f ,

I, if, 2, 2j feet respectively. The drawing-board weighs 6 Ibs., and is

6 feet long and 3 feet broad. Find the position where a single support
would need to be placed in order that the board should remain horizontal.

Ans. 3'27 feet from short edge, I '58 feet from long edge.
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3. An area bounded by a curve and a straight line is divided by ordinates

4 feet apart of the following lengths: o, 12*5, 14*3, iS'i, I5'5> I5'4> I4'8,

14*0, o feet respectively. Find

(1) Area in square feet.

(2) Position of centre of gravity relative to the first ordinate.

(3) Position of the centre of gravity relative to the base.

Ans. (l) 423 square feet ; (2) 16-27 feet ; (3) 7*24 feet.

4. A triangle ABC has its base BC 15 feet long, and its height 25
feet. A line is drawn 10 feet from A parallel to the base, meeting AB and
AC in D and E. Find the distance of the centre of gravity of DBCE
from the apex.

Ans. 18*57 feet.

5. The semi-ordinates of a water-plane in feet, commencing from the

after end, are 5*2, io'2, 14-4, I7"9, 20-6, 22-7, 24'3, 25-5, 26'2, 26-5,
26'6, 26-3, 25-4, 23-9, 2i'8, 1-88, 15-4, 11-5, 7-2, 3-3, 2'2. The distance

apart is 15 feet. Find the area of the water-plane, and the position of the

centre of gravity in relation to the middle ordinate.

Ans. 11,176 square feet; 10-15 feet abaft middle.
6. Find the area and transverse position of the centre of gravity of

"half" a water-line plane, the ordinates in feet being 0*5, 6, 12, 16, 12, 10,
and o'5 respectively, the common interval being 15 feet.

Ans. 885 square feet; 6-05 feet.

7. The areas of sections 17' 6" apart through a bunker, commencing
from fprward, are 65, 98, 123, 137, 135, 122, 96 square feet respectively.
The length of bunker is 100 feet, and its fore end is l' 6" forward of the

section whose area is 65 square feet. Draw in a curve of sectional areas,
and obtain, by using convenient ordinates, the number of cubic feet in the

bunker, and the number of tons of coal it will contain, assuming that 43 cubic

feet of coal weigh I ton. Find also the position of the C.G. of the coal

relative to the after end of the bunker.
Ans. 272 tons ; 46} feet from the after end.

8. The tons per inch in salt water of a vessel at water-lines 3 feet

apart, commencing with the L.W.L., are 31-2, 30-0, 28-35, 26-21, 23-38,

19-5, 12-9. Find the displacement in salt and fresh water and the position
of the C.B. below the L.W.L., neglecting the portion below the lowest

W.L. Draw in the tons per inch curve for salt water to a convenient scale,
and estimate from it the weight necessary to be taken out in order to lighten
the vessel 2' 3^" from the L.W.L. The mean draught is 20' 6".

Ans. 5405 tons; 5255 tons; 8 -oi feet; 847 tons.

9. In the preceding question, calling the L.W.L. I, find the displacement
up to 2 W.L., 3 W.L., and 4 W.L., and draw in a curve of displacement
from the results you obtain, and check your answer to the latter part of the

question.
10. The tons per inch of a ship's displacement at water-lines 4 feet

apart, commencing at the L.W.L., are 44*3, 42-7, 40-5, 37-5, 33-3. Find
number of tons displacement, and the depth of C.B. below the top W.L.

Ans. 7670 tons ; 76 feet.

11. The ship in the previous question has two water-tight transverse

bulkheads 38 feet apart amidship, and water-tight flats at 4 feet below and

3 feet above the normal L.W.L. If a hole is made in the side 2 feet

below the L.W.L., how much would the vessel sink, taking the breadth
of the L.W.L. amidships as 70 feet? Indicate the steps where, owing to

insufficient information, you are unable to obtain a perfectly accurate result.

Ans. 8 inches.

12. The areas of transverse sections of a coal-bunker 19 feet apart are
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respectively 6^2, 93'6, I2i'6, io8'8, 94^8 square feet, and the centres

of gravity of these sections are ID'S, ir6, 12*2, ii'7, ii'2 feet respectively
below the L.W.L. Find the number of tons of coal the bunker will hold,
and the vertical position of its centre of gravity (44 cubic feet of coal to the

ton).
Ans. 174*3 tons; li'68 feet below L.W.L.

13. A vessel is 180 feet long, and the transverse sections from the load

water-line to the keel are semicircles. Find the longitudinal position of

the centre of buoyancy, the ordinates of the load water-plane being I, 5> I3

15, 14, 12, and 10 feet respectively.
Ans. io6'2 feet from the finer end.

14. Estimate the distance of the centre of buoyancy of a vessel below
the L.W.L., the vessel having 22' 6" mean moulded draught, block co-

efficient of displacement 0-55, coefficient of fineness of L.W.L. o -

7 (use

Normand's formula, p. 63).
Ans. 9 '65 feet.

15. A vessel of 2210 tons displacement, 13' 6" draught, and area

of load water-plane 8160 square feet, has the C.B., calculated on the dis-

placement sheet, at a distance of 5*43 feet below the L.W.L. Check this

result.

1 6. The main portion of the displacement of a vessel has been calculated

and found to be 10,466 tons, and its centre of gravity is 10*48 feet below
the L.W.L., and 5 '85 feet abaft the middle ordinate. In addition to this,

there are the following appendages :

tons.

Below lowest W.L. 263, 24*8 ft. below L.W.L., 4-4 ft. abaft mid. ord.

Forward ... ... 5, 12*0 ,, ,, 202 ft. forward of mid.

ord.

Stern 16, 2'8 ,, 201 ft. abaft mid. ord.

Rudder 16, 17-5 ,, ,, 200 ,, ,,

Bilge keels ... 20, 20 ,, o ,, ,,

Shafting, etc. ... 18, 15 ,, ,, 140 ,, ,,

Find the total displacement and position of the centre of buoyancy.
Ans. 10,804 tons > C.B. 6'5 abaft mid. ord., IO'86 ft. below L.W.L.

17. The displacements of a vessel up to water-planes 4 feet apart
are 10,804, 8612, 6511, 4550, 2810, 1331, and 263 tons respectively. The

draught is 26 feet. Find the distance of the centre of buoyancy below the

load water-line. Would you call the above a fine or a full ship ?

Ans. io'9 feet nearly.
1 8. The load displacement of a ship is 5000 tons, and the centre of

buoyancy is 10 feet below the load water-line. In the light condition the

displacement of the ship is 2000 tons, and the centre of gravity of the layer
between the load and light lines is 6 feet below the load-line. Find the

vertical position of the centre of buoyancy below the light line in the light
condition.

Ans. 4 feet, assuming that the C.G. of the layer is at half its depth.
19. Ascertain the displacement and position of the centre of buoyancy

of a floating body of length 140 feet, depth 10 feet, the forward section

being a triangle 10 feet wide at the deck and with its apex at the keel, and
the after section a trapezoid 20 leet wide at the deck and 10 feet wide at

the keel, the sides of the vessel being plane surfaces
; draught of water

may be taken as 7 feet.

Ans. 238 tons
; 56*3 feet before after end, 3 feet below water-line.

20. Show by experiment or otherwise that the centre of gravity of a
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quadrant of a circle 3 inches radius is I '8 inches from the right angle of

the quadrant.
21. A floating body has a constant triangular section, vertex down-

wards, and has a constant draught of 12 feet in fresh water, the breadth at

the water-line being 24 feet. The keel just touches a quantity of mud of

specific gravity 2. The water-level now falls 6 feet. How far will the

body sink into the mud ?

Ans. 4 feet il\ inches.



CHAPTER III.

CONDITIONS OF EQUILIBRIUM, TRANSVERSE META-
CENTRE, MOMENT OF INERTIA, TRANSVERSE JBM,
INCLINING EXPERIMENT, METACENTRIC HEIGHT,
ETC.

Trigonometry. The student of this subject will find it a

distinct advantage, especially when dealing with the question
of stability, if he has a knowledge of some of the elementary

portions of trigonometry. The following are some properties

which should be thoroughly grasped :

Circular Measure of Angles. The degree is the unit gene-

rally employed for the measurement of angles. A right angle

is divided into 90 equal

parts, and each of these

parts is termed a "de-

gree? If two Ijnes, as

OA, OB, Fig. 43, are

inclined to each other,

forming the angle AOB,
and we draw at any radius

OA an arc AB from the

A. centre O, cutting OA,
OB in A and B, then

length of arc AB ~- radius OA is termed the circular measure

of the angle AOB. Or, putting it more shortly

Circular measure =
arc

radius

The circular measure of four right \ _ circumference of a circle

angles, or 360 degrees radius

= 27T
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The circular measure of a right angle \
= --

) 2

Since 360 degrees = 2?r in circular measure, then the angle
whose circular measure is unity is

360 = 57-3 degrees

The circular measure of i degree is ?- = 0^01745, and

thus the circular measure of any angle is found by multiplying
the number of degrees in it by

Trigonometrical Ratios?
etc. Let BOC, Fig. 44, be

any angle ;
take any point P

in one of the sides OC, and

draw PM perpendicular to

OB. Call the angle BOC, 0.
2

PM is termed the perpen-

dicular.

OM is termed the base.

OP is termed the hypo-
tenuse. 0.

Then

PM _ perpendicular

OP
OM
OP

hypotenuse
base

= sine &, usually written sin

= cosine 0, usually written cos
hypotenuse

PM perpendicular
fyirf

= r - = tangent 6, usually written tanOM base

These ratios will have the same value wherever P is taken

on the line OC.

1 An aid to memory which is found of assistance by many in learning
these ratios is

Sin /ifrplexes
Cos of base Ayfocrisy.

2 9 is a Greek letter (theta) often used to denote an angle.
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We can write sin = - -

hyp.

a base
cos =

hyp.

and also tan 6 = s
-

cos Q

There are names for the inversions of the above ratios,

which it is not proposed to use in this work.

For small angles, the value of the angle in circular

measure is very nearly the same as the values of sin and

tan 0. This will be seen by comparing the values of 0, sin 6,

and tan 6 for the following angles :

Angle in

decrees.
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of the water, or the buoyancy, must act through the centre of

buoyancy. All the horizontal pressures of the water on the

surface of the ship must evidently balance among themselves.

We therefore have the following forces acting upon the ship :

(1) The weight acting downwards through the C.G. ;

(2) The upward support of the water, or, as it is termed,

the buoyancy, acting upwards through the C.B. ;

and for the ship to be at rest, these two forces must act in the

same line and counteract each other. Consequently, we also

have the following condition :

T/ie centre of gravity of the ship, with everything she has on

board, must be in the same vertical line as the centre of buoyancy.

If a rope is pulled at both ends by two men exerting the

same strength, the rope will evidently remain stationary ;
and

this is the case with a ship floating freely and at rest in still

water. She will have no tendency to move of herself so long

as the C.G. and the C.B. are in the same vertical line.

Definition of Statical Stability. The statical

stability of a vessel is the tendency she has to return to the

upright when inclined away from that position. It is evident

that under ordinary conditions of service a vessel cannot

always remain upright ;
she is continually being forced away

from the upright by external forces, such as the action of

the wind and the waves. It is very important that the ship

shall have such qualities that these inclinations that are forced

upon her shall not affect her safety ;
and it is the object of the

present chapter to discuss how these qualities can be secured

and made the subject of calculation so far as small angles of

inclination are concerned.

A ship is said to be in stable equilibrium for a given direc-

tion of inclination if, on being slightly inclined in that direction

from her position of rest, she tends to return to that position.

A ship is said to be in unstable equilibrium for a given
direction of inclination if, on being slightly inclined in that

direction from her position of rest, she tends to move away
farther from that position.

A ship is said to be in neutral or indifferent equilibrium
for a given direction of inclination if, on being slightly inclined
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in that direction from her position of rest, she neither tends

to return to nor move farther from that position.
These three cases are represented by the case of a heavy

sphere placed upon a horizontal table.

1. If the sphere is weighted so that its C.G. is out of the

centre, and the C.G. is vertically below the centre, it will be
in stable equilibrium.

2. If the same sphere is placed so that its C.G. is vertically

above the centre, it will be in unstable equilibrium.

3. If the sphere is formed of homogeneous material so that

its C.G. is at the centre, it will be in neutral or indifferent

equilibrium.

Transverse Metacentre. We shall deal first with

transverse inclinations, because they are the more important,
and deal with inclinations in a longitudinal or fore-and-aft

direction in the next chapter.

Let Fig. 45 represent the section of a ship steadily inclined

STABLE.

FIG. 45-

at a small angle from the upright by some external force,

such as the wind. The vessel has the same weight before and

after the inclination, and consequently has the same volume

of displacement. We must assume that no weights on board

shift, and consequently the centre of gravity remains in the

same position in the ship. But although the total volume of
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displacement remains the same, the shape of this volume

changes, and consequently the centre of buoyancy will shift

from its original position. In the figure the ship is repre-

sented by the section, WAL being the immersed section

when upright, WL being the position of the water-line on

the ship. On being inclined, WL' becomes the water-line,

and WAL' represents tbe immersed volume of the ship, which,

although different in shape, must have the same volume as the

original immersed volume WAL.
The wedge-shaped volume represented by WSW, which

has come out of the water, is termed the "
emerged" or " out"

wedge. The wedge-shaped volume represented by LSL',

which has gone into the water, is termed the "immersed" or
"
in

"
wedge. Since the ship retains the same volume of

displacement, it follows that the volume of the emerged wedge
WSW is equal to the volume of the immersed wedge LSL'.

It is only for small angles of inclination that the point S,

where the water-lines intersect, falls on the middle line of the

vessel. For larger angles it moves further out, as shown in

Fig- 77-

Now consider the vessel inclined at a small angle from

the upright, as in Fig. 45. The new volume of displacement
WAL' has its centre of buoyancy in a certain position, say B'.

This position might be calculated from the drawings in the

same manner as we found the point B, the original centre of

buoyancy ; but we shall see shortly how to fix the position of

the point B' much more easily.

B' being the new centre of buoyancy, the upward force of

the buoyancy must act through B', while the weight of the ship

acts vertically down through G, the centre of gravity of the

ship. Suppose the vertical through B' cuts the middle line of

the ship in M
;
then we shall have two equal forces acting on

the ship, viz.

(1) Weight acting vertically down through the centre of

gravity.

(2) Buoyancy acting vertically up through the new centre

of buoyancy.
But they do not act in the same vertical line. Such a system
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of forces is termed a couple. Draw GZ perpendicular to the

vertical through B'. Then the equal forces act at a distance

from each other of GZ. This distance is termed the arm of

the couple, and the moment of the couple is W x GZ. On

looking at the figure, it is seen that the couple is tending to

take the ship back to the upright. If the relative positions

of G and M were such that the couple acted as in Fig. 46,

the couple would tend to take the ship farther away from the

upright ;
and again, if G and M coincided, we should have the

forces acting in the same vertical line, and consequently no

UNSTABLE.

rw.

FIG. 46.

couple at all, and the ship would have no tendency to move

either to the upright or away from it.

We see, therefore, that for a ship to be in stable equilibrium

for any direction of inclination, it is necessary that the meta-

centre be above the centre of gravity of the ship. We now

group together the three conditions which must be fulfilled in

order that a ship may float freely and at rest in stable equili-

brium

(i) The weight of water displaced must equal the total

weight of the ship (see p. 21).
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(2) The centre of gravity of the ship must be in the same

vertical line as the centre of gravity of the displaced water

(centre of buoyancy) (see p. 89).

(3) The centre of gravity of the ship must be below the

metacentre.

For small transverse inclinations, M is termed the transverse

metacentre, which we may accordingly define as follows :

For a given plane of flotation of a vessel in the upright

condition, let B be the centre of buoyancy, and BM the vertical

through it. Suppose the vessel inclined transversely through

a very small angle, retaining the same volume of displacement,

B' being the new centre of buoyancy, and B'M the vertical

through it, meeting BM in M. Then this point of intersection,

M, is termed the transverse metacentre.

There are two things in this definition that should be noted :

(i) the angle of inclination is supposed very small, and (2) the

volume of displacement remains the same.

It is found that, for all practical purposes, in ordinary ships

the point M does not change in position for inclinations up to

as large as 10 to 15; but beyond this it takes up different

positions.

We may now say, with reference to a ship's initial stability

or stability in the upright condition

(1) If G is below M, the ship is in stable equilibrium.

(2) If G is above M, the ship is in unstable equilibrium.

(3) If G coincides with M, the ship is in neutral or in-

different equilibrium.

We thus see how important the relative positions of the

centre of gravity and the transverse metacentre are as affecting

a ship's initial stability. The distance GM is termed the

transverse metacentric height, or, more generally, simply the

metacentric height.

We have seen that for small angles M remains practically

in a constant position, and consequently we may say GZ
= GM . sin B for angles up to 10 to 15, say. GZ is the

arm of the couple, and so we can say that the moment of the

couple is

W x GM . sin
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If M is above G, this moment tends to right the ship, and

we may therefore say that the moment of statical stability at the

angle 6 is

W X GM . sin 6

This is termed the metacentric method of determining a

vessel's stability. It can only be used at small angles of

inclination to the upright, viz. up to from 10 to 15 degrees.

Example. A vessel of 14,000 tons displacement has a metacentric

height of 3^ feet. Then, if she. is steadily inclined at an angle of 10, the

tendency she has to return to the upright, or, as we have termed it, the

moment of statical stability, is

14,000 x 3'5 X sin 10 = 8506 foot-tons

We shall discuss later how the distance between G and M,
or the metacentric height, influences the behaviour of a ship,

and what its value should be in various cases
;
we must now

investigate the methods which are employed by naval archi-

tects to determine the distance for any given ship.

There are two things to be found, viz. (i) the position of

G, the centre of gravity of the vessel
; (2) the position of M,

the transverse metacentre.

Now, G depends solely upon the vertical distribution of the

weights forming the structure and lading of the ship, and the

methods employed to find its position we shall deal with

separately ;
but M depends solely upon the form of the ship,

and its position can be determined when the geometrical form

of the underwater portion of the ship is known. Before we

proceed with the investigation of the rules necessary to do this,

we must consider certain geometrical principles which have to

be employed.
Centre of Flotation. If a floating body is slightly

inclined so as to maintain the same volume of displacement,

the new water-plane must pass through the centre of gravity of

the original water-plane. In order that the same volume of

displacement may be retained, the volume of the immersed

wedge SLLj, Fig 47, must equal the volume of the emerged

wedge SWWi. Call y an ordinate on the immersed side, and

y an ordinate on the emerged side of the water-plane. Then
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the areas of the sections of the immersed and emerged wedges
are respectively (since LLj = y . d&, WWj = / . dd, dd being
the small angle of inclination)

and using the notation we have already employed

Volume of immersed wedge = $Jj>
2 .dO.dx

emerged = $/(/)'
2

. dO . dx

and accordingly

W.d6.dx = i/(/)
2

. dO . dx

or i// . dx = i/(/)
2

. dx

But \f . dx is the moment of the immersed portion of the

water-plane about the intersection,

and /(y)
2 dx is the moment of

the emerged portion of the water-

plane about the intersection (see

p. 57); therefore the moment of

one side of the water-plane about

the intersection is the same as the

moment of the other side, and

consequently the line of inter-

section passes through the centre

of gravity of the water-plane.

The centre of gravity of the water-

plane is termed the centre offlota-
tion. In whatever direction a

ship is inclined, transversely,

longitudinally, or in any interme-

diate direction, through a small

angle, the line of intersection of

the new water-plane with the

original water-plane must always

pass through the centre of flotation. For transverse inclinations

of a ship the line of intersection is the centre line of the water-

plane ;
for longitudinal inclinations the fore-and-aft position of

the centre of flotation has to be calculated, as we shall see

when we deal with longitudinal inclinations.
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Shift of the Centre of Gravity of a Figure due to

the Shift of a Portion of the Figure. Let ABCD,
Fig. 48, be a square with its centre at G

;
this point will also

be its centre of gravity. Suppose one corner of the square EF
is taken away and placed
in the position FK, forming
a new figure, ADKHGE.
We wish to find the centre

of gravity of this new figure.

The centre of gravity of the

original figure was at G,
and a portion of it, EF,
with its centre of gravity at

g, has been shifted so that

its centre of gravity now is at g'. Then this important

principle holds good
The centre of gravity of the figure will shift to G', such that

GG' is parallel to^, and if A be the original area of the square,

and a be the area shifted

rr ,
<* X gg

1

~A~
In this case, if ib be a side of the square

FIG.

gg' =

and therefore GG' = TT
40

In the same way, gg" being the horizontal shift of the centre

of gravity of the corner EF, the horizontal shift of the centre

of gravity of the whole area will be given by

xrr"

In this case gg" = b

and therefore GG" = \b

The same principle applies to the shift of the centre of

gravity of a volume or a weight due to the shift of a portion of
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it. The small portion multiplied by its shift is equal to the

whole body multiplied by its shift, and the shifts are in parallel

directions.

The uses that are made of this will become more apparent
as we proceed, but the following examples will serve as illus-

trations :

Example. A vessel weighing W tons has a weight w tons on the deck.
This is shifted transversely across the deck a distance of d feet, as in Fig. 49.
Find the shift of the C.G. of the vessel both in direction and amount.

W

. IW.

jp-

FIG. 49.

G will move to G' such that GG' will be parallel to the line joining
the original and final positions of the weight w ;

!and ^fW
If w = 70 tons, d = 30 feet, W = 5000 tons, then

GG' = 7 X3 = tt feet = 0-42 foot

5000

Example. In a vessel of 4000 tons displacement, suppose 100 tons of

coal to be shifted so that its C.G. moves 18 feet transversely and 4 feet

vertically. Find the shift of the C.G. of the vessel.

The C.G. will move horizontally an amount equal to = 0*45 ft.

and vertically an amount equal to
4000

= 0*1125 ft.

Moment of Inertia. We have dealt in Chapter II. with

H
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the moment of a. force about a given point, and we denned it as

the product of the force and the perpendicular distance of its

line of action from the point; also the moment of an area

about a given axis as being the area multiplied by the distance

of its centre of gravity from the axis. We could find the

moment of a large area about a given axis by dividing it into

a number of small areas and summing up the moments of all

these small areas about the axis. In this we notice that the

area or force is multiplied simply by the distance. Now we

have to go a step further, and imagine that each small area is

multiplied by the square of its distance from a given axis. If

all such products are added together for an area, we should

obtain not the simple moment, but what may be termed the

FIG. 50.

moment of the second degree, or more often the moment oj

ineiiia of the area about the given axis. 1 We therefore define

the moment of inertia of an area about a given axis as

follows :

1 This is the geometrical moment of inertia. Strictly speaking, moment
of inertia involves the mass of the body. We make here the same assump-
tion that we did in simple moments (p. 47), viz. that the area is the

surface of a very thin lamina or plate of homogeneous material of uniform

thickness.
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Imagine tJie area divided into very small areas, and each such

small area multiplied by the square of its distancefrom the given
axis ; then, if all these products be added together, we shall obtain

the moment of inertia ofthe total area about the given axis.

Thus in Fig. 50, let OO be the axis. Take a very small

area, calling it dA, distance y from the axis. Then the sum
of all such products as dh. x y\ or (using the notation we have

employed) Jj>
2

. </A, will be the moment of inertia of the area

about the axis OO.
To determine this for any figure requires the application of

advanced mathematics, but the result for certain regular figures

are given below.

It is found that we can always express the moment of

inertia, often written I, of a plane area about a given axis by
the expression

where A is the area of the figure ;

h is the depth of the figure perpendicular to the axis
;

// is a coefficient depending on the shape of the figure

and the position of the axis.

First, when the axis is through the centre of gravity of

the figure parallel to the base, as in Figs. 51 and 52

r
H
4- N.

FIG. 51. FIG. 52.

for a circle // = y^, so that I = y^A//
2

for a rectangle =
y^, I = y^A//

2

for a triangle n = yj, I =[y|-A/r
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Second, when the axis is one of the sides

for a rectangle n = ^, so that I = jjA/r

for a triangle ;/ = ^, I = ^A/r

Example. Two squares of side a are joined to form a rectangle. The
I of each square about the common side is

\(ci-}a^ (cf = area)

the I of both about the common side will be the sum of each taken

separately, or

If, however, we took the whole figure and treated it as a rectangle, its I

about the common side would be

T
'

2(2a
2
)(2rt)

2 = <z
4

(area = 2a~)

which is the same result as was obtained before.

To find the moment of inertia of a plane figure about an axis

parallel to and a given distancefrom an axis throiigh its centre

ofgravity.

Suppose the moment of inertia about the axis NN passing

through the centre of gravity of the figure (Fig. 53) is I
,
the

area of the figure is A, and

OO, the given axis, is parallel

to NN and a distance y
from it. Then the moment
of inertia (I) of the figure

about OO is given by

I = I. + A/
The moment of inertia of an

area about any axis is there-

|N.
fore determined by adding
to the moment of inertia of

the area about a parallel axis

through the centre of gravity,

the product of the area into

the square of the distance

between the two axes. We
see from this that the moment of inertia of a figure about an

axis through its own centre of gravity is always less than about

any other axis parallel to it.

IN.
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Example. Having given the moment of inertia of the triangle in

Fig. 52 about the axis NN through the centre of gravity as TgA/fc*, find the

moment of inertia about the base parallel to NN.
Applying the above rule, we have

which agrees with the value given above for the moment of inertia of a

triangle about its base.

Example. P'ind the moment of inertia of a triangle of area A and

height k about an axis through the vertex parallel to the base.

Ans. |A/;
2

.

Example. A rectangle is 4 inches long and 3 inches broad. Compare
the ratio of its moment of inertia about an axis through the centre parallel
to the long and short sides respectively.

Ans. 9 I 16.

Example. A square of 12 inches side has another symmetrical square
of half its area cut out of the centre. Compare the moments of inertia

about an axis through the centre parallel to one side of, the original

square, the square cut out, the remaining area.

Ans. As 411:3, the ratio of the areas being 4 '. 2 ; 2.

This last example illustrates the important fact that if an

area is distributed away from the centre of gravity, the moment
of inertia is very much greater than if the same area were

massed near the centre of gravity.

To find the Moment of Inertia of a Plane Cur-

vilinear Figure (as Fig. 36, p. 57) about its Base. Take
a strip PQ of length y and breadth (indefinitely small) dx.

Then, if we regard PQ as a rectangle, its moment of inertia

about the base DC is

\(y . dx))? = j/
1

. dx (y . dx = area)

and the moment of inertia of the whole figure about DC will

be the sum of all such expressions as this ;
or

that is, we put the third part of the cubes of the ordinates of the

curve through either of Simpson's rules. For the water-plane

of a ship (for which we usually require to find the moment of

inertia about the centre line), we must add :the moment of

inertia of both sides together : and, since these are symmetrical,

we have

I = \ Jj>
:! .dx (y semi-ordinate of water-plane)
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In finding the moment of inertia of a water-plane about the

centre line, the work is arranged as follows :

Number of
ordinate.
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about the centre line, but it is not convenient to use the area

as we have done above. We know that the area can be

expressed in the form

k x L x B

where I, is the extreme length ;

B breadth;
k is a coefficient of fineness

;

so that we can write

1 = LB3

where ;/ is a new coefficient that will vary for different shapes
of water-planes. If we can find what the values of the co-

efficient n are for ordinary water-planes, it would be very
useful in checking our calculation work. Taking the case of

a L.W.P. in the form of a rectangle, we should find that n =
0*08, and for a L.W.P. in the form of two triangles, n = 0*02.

These are two extreme cases, and we should expect for

ordinary ships the value of the coefficient n would lie between

these values. This is found to be the case, and we may take

the following approximate values for the value of n in the

formula I =

For ships whose load water-planes are extremely fine ... 0*04
,, ,, ,, moderately fine ... 0^05
,, ,, ,, ,, very full ... ... O'o6

For the water-plane whose moment of inertia we calcu-

lated above, we have, length 280 feet, breadth 35*3 feet, and

I = 508,262 in foot-units. Therefore the value of the coefficient

n is

508262
280 x (35'3)

:t

= '

41

Formula for finding the Distance of the Trans-

verse Metacentre above the Centre of Buoyancy
(BM). We have already discussed in Chapter II. how the

position of the centre ofbuoyancy can be determined if the under-

water form of the ship is known, and now we proceed to discuss

how the distance BM is found. Knowing this, we are able to

fix the position of the transverse metacentre in the ship.
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Let Fig. 45, p. 90, represent a ship heeled over to a very

small angle 6 (much exaggerated in the figure).

B is the centre of buoyancy in the upright position when

floating at the water-line WL.
B' is the centre of buoyancy in the inclined position when

floating at the water-line W'L'.

v is the volume of either the immersed edge LSL' or the

emerged wedge WSW.
V is the total volume of displacement.

g is the centre of gravity of the emerged wedge.

g is the centre of gravity of the immersed wedge.

Then, using the principle given on p. 96, BB' will be parallel

,
and

since the new displacement is formed by taking away the wedge
WSW from the original displacement, and putting it in the

position LSL'.

Now for the very small angle of inclination, we may say

that

BB'

or BB' = BM sin 6

so that we can find BM if we can determine the value of

v X gg\ since V, the volume of displacement, is known.

Let Fig. 54 be a section of the vessel ; wl, it/I', the original

and new water-lines respectively, the angle of inclination being

very small. Then we may term wSo/ the emerged triangle,

and K>f the immersed triangle, being transverse sections of

the emerged and immersed wedges, and wit/, IP being for all

practical purposes straight lines. Ify be the half-breadth of

the water-line at this section, we can say ww' = II' = y sin 6,

and the area of either of the triangles is

%y X y sin = |/ sin 6

Let a, d be the centres of gravity of the triangles o>Sa/, /S/'

respectively ;
then we can say, seeing that is very small, that
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ad = %y, since the centre of gravity of a triangle is two-thirds

the height from the apex. The new immersed section being

regarded as formed by the transference of the triangle

FIG. 54.

to the position occupied by the triangle /S/', the moment of

transference is

(y- sin 0) x ib = f/ sin

and for a very small length dx of the water-line the moment
will be

fy
j
sin 6 . dx

since the small volume is \y sin . dx, and the shift of its

centre of gravity is fj. If now we summed all such expres-

sions as this for the whole length of the ship, we should get
the moment of the transference of the wedge, or v X gg'.

Therefore we may say, using the ordinary notation

X gg' = /!/ sin . dx
= sin y . dx

therefore we have

-
-y

-
-y-

-DAT t/y dx
or BM = - 1^

But the numerator of this expression is what we have found to
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be the moment of inertia of a water-plane about its centre line,

y being a semi-ordinate ;
therefore we can write

We have seen, on p. 101, how the moment of inertia of a

water-plane is found for any given case, and knowing the

volume of displacement, we can then determine the distance

BM, and so, knowing the position of the C.B., fix the position

of the transverse metacentre in the ship.

Example. A lighter is in the form of a box, 120 feet long, 30 feet

broad, and floats at a draught of 10 feet. Find its transverse BM.
In this case the water-plane is a rectangle 120' X 30', and we want its

I about the middle line. Using the formula for the I of a rectangle about
an axis through its centre parallel to a side, -^A//

2
, we have

I = ^ X 3600 X 900 (//
= 30)

= 270,000
V, the volume of displacement, = 120 X 30 X 10 = 36,000

. -O-\K 270,000 ,
,

'

.. BM = -! = 75 feet

36,000

Example. A pontoon of 10 feet draught has a constant section in the

form of a trapezoid, breadth at the water-line 30 feet, breadth at base

20 feet, length 120 feet. Find the transverse BM.
Ans. 9 feet.

It will be noticed that the water-plane in this question is

the same as in the previous question, but the displacement being

less, the BM is greater. M is therefore higher in the ship for

two reasons. BM is greater and B is higher in the second case.

Example. A raft is formed of two cylinders 5 feet in diameter, parallel

throughout their lengths, and 10 feet apart, centre to centre. The raft floats

with the axes of the cylinders in the surface. Find the transverse BM.
We shall find that the length does not affect the result, but we will

suppose the length is / feet. We may find the I of the water-plane in two

ways. It consists of two rectangles each /' X 5', and their centre lines

are 10 feet apart.
1. The water-plane may be regarded as formed by cutting a rectangle

/' X 5' out of a rectangle /' X 15' ;

.*. I = y5(/ x 15) x is
2

^(/ x 5) x 5*

this being about a fore-and-aft axis at the centre of the raft.

2. We may take the two rectangles separately, and find the I of each
about the centre line of the raft, which is 5 feet from the line through the

centre of each rectangle. Using the formula

= ^W x 5)S
2 + (I x 5)5

2
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and for both rectangles the moment of inertia will be twice this, or 3
fj

9
/, as

obtained above.

We have to find the volume of displacement, which works out to ?
T
7
j*/

cubic feet. The distance BM is therefore

ao/...^L/_ x 3- 8 feet

Example. A raft is formed of three cylinders, 5 feet in diameter,

parallel and symmetrical throughout their lengths, the breadth extreme

being 25 feet. The raft floats with the axes of the cylinders in the surface.

Find the transverse BM.
The moment of inertia of the water-plane of this raft is best found by

using the formula I = I + h.y- for the two outside rectangles, and adding
it to I

, the moment of inertia of the centre rectangle about the middle line.

We therefore have for the whole water-plane I = ^W, where / = the

length ;
and the volume of displacement being -*$/, the value of BM will be

35 feet.

Approximate Formula for the Height of the Trans-

verse Metacentre above the Centre of Buoyancy.
The formula for BM is

We have seen that we may express I as ;/LB3
,
where n is

a coefficient which varies for different shapes of water-planes,

but which will be the same for two ships whose water-planes
are similar.

We have also seen that we may express V as LBD, where

D is the mean moulded draft (to top of keel amidships), and k

is a coefficient which varies for different forms, but which will

be the same for two ships whose under-water forms are similar.

Therefore we may say

_ X L X B*

~'k X L X B X D
B2

=
"-TJ

where a is a coefficient obtained from the coefficients n and k.

Sir William White, in the " Manual of Naval Architecture,"

gives the value of a as being between 0*08 and o -

i, a usual

value for merchant ships being 0*09. The above formula

shows very clearly that the breadth is more effective than the

draught in determining what the value of BM is in any given
case. It will also be noticed that the length is not brought in.
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The ship for which the moment of inertia of a water-plane

was calculated on p. 102, had a displacement of 1837 tons up
to that water-plane. The value of BM is therefore

508262
i 837 X 35

feet

The breadth and mean draught were 35*3 and 135 feet re-

spectively. Consequently the value of the coefficient a is

To prove that a Homogeneous Log of Timber of

Square Section and Specific Gravity 0'5 cannot float

in Fresh Water with One of its Faces Horizontal.

The log having a specific gravity of 0-5 will float, and will float

with half its substance immersed. The condition that it shall

float in stable equilibrium, as regards transverse inclination, in

any position is that the transverse metacentre shall be above

the centre of gravity.

Let the section be as indicated in Fig. 55, with side length

2a. And suppose the log
'

is placed in the water with

J4 .j_.*- yj one gj^g of tnjs section

horizontal. Then the

draught-line will be at a

distance a from
'

the bot-

tom, and the log, being

homogeneous, i.e. of the

same quality all through,

will have its C.G. in the

middle at G, at a distance

also of a from the bottom.

The centre of buoyancy
FIG. 55. will be at a distance of

- from the bottom. The height of the transverse metacentre
2

above the centre of buoyancy is given by
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where I = moment of inertia of water-plane about a longi-

tudinal axis through its centre

V = volume of displacement in cubic feet.

Now, the water-plane of the log is a rectangle of length /

and breadth 20, and therefore

itS I = Y2 /. 2(l(20f = Y^fa"'

and V = /. za . a = 2/ 2

/. BM = iV^r -f- 2la- = \a
But BG = \a

therefore the transverse metacentre is below the centre of

gravity, and consequently the log cannot float in the position

given.

If, now, the log be assumed floating with one corner down-

ward, it will be found by a precisely similar method that

BG = 0-47 \a

and BM = 0*943^

Thus in this case the transverse metacentre is above the

centre of gravity, and consequently the log will float in stable

equilibrium.

It can also be shown by similar methods that the position

of stable equilibrium for all directions of inclination of a cube

composed of homogeneous material of specific gravity 0*5 is

with one corner downwards.

Metacentric Diagram. We have seen how the position

of the transverse metacentre can be determined for any given

ship floating at a definite water-line. It is often necessary,

however, to know the position of the metacentre when the ship

is floating at some different water-line ; as, for instance, when
coal or stores have been consumed, or when the ship is in a light

condition. It is usual to construct a diagram which will show

at once, for any given mean draught which the vessel may have,

the position of the transverse metacentre. Such a diagram is

shown in Fig. 56, and it is constructed in the following manner :

A line W^ is drawn to represent the load water-line, and

parallel to it are drawn W2L2,
W3L2, W4L4 to represent the
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water-lines Nos. 2, 3, and 4, which are used for calculating the

displacement, the proper distance apart, a convenient scale

being ^ inch to i foot. A line LiL4 is drawn cutting these

level lines, and inclined to them at an angle of 45. Through
the points of intersection Lj, L.,, L3 ,

L4 ,
are drawn vertical lines

as shown. The ship is then supposed to float successively at

these water-lines, and the position of the centre of buoyancy
and the distance of the transverse metacentre above the C.B.

FIG. 56.

calculated for each case. The methods employed for finding
the position of the C.B. at the different water-lines have already
been dealt with in Chapter II. On the vertical lines are then

set down from the L.W.L. the respective distances of the

centres of buoyancy below the L.W.L. Thus L^ is the

distance when floating at the L.W.L., and AB3 the distance

when floating at No. 3 W.L. In this way the points B
1? B2 ,

B3,
B4 are obtained

; and if the calculations are correct, a fair
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line can be drawn passing through all these spots as shown.

Such a curve is termed the curve of centres of buoyancy. It is

usually found to be rather a flat curve, being straight near the

load-line condition. The distance BM for each water-line is

then set up from Bj, B;>, Ba ,
B4 respectively, giving the points

MU M 2, M..., M4 . A curve can then be drawn through these

points, which is termed the curve of transverse metacentres.

Now, suppose the ship is floating at some intermediate water-

line say wl\ through /, where wl cuts the 45 line, draw a

vertical cutting the curves of centres of buoyancy and meta-

centres in b and m respectively. Then m will be the position

of the transverse metacentre of the ship when floating at the

water-line wl. It will be noticed that we have supposed the

ship to float always with the water-plane parallel to the L.W.P. ;

that is to say, she does not alter trim. For water-planes not

parallel to the L.W.P. we take the mean draught (i.e. the

draughts at the fore-and-aft perpendiculars are added together

and divided by 2), and find the position of M on the meta-

centric diagram for the water-plane, parallel to the L.W.P.,

corresponding to this mean draught. Unless the change of

trim is very considerable, this is found to be correct enough
for all practical purposes. Suppose, however, the ship trims

very much by the stern,
1

owing to coal or stores forward being

consumed, the shape of her water-plane will be very different

from the shape it would have if she were floating at her normal

trim or parallel to the L.W.P. ; generally the water-plane will

be fuller under these circumstances, and the moment of inertia

will be greater, and consequently M higher in the ship, than

would be given on the metacentric diagram. When a ship

is inclined, an operation that will be described later, she

is frequently in an unfinished condition, and trims consider-

ably by the stern. It is necessary to know the position of

the transverse metacentre accurately for this condition, and

1 This would be the case in the following : A ship is designed to float

at a draught of 17 feet forward and IQ feet aft, or, as we say, 2 feet by the

stern. If her draught is, say, 16 feet forward and 20 feet aft, she will have
the same mean draught as designed, viz. 18 feet, but she will trim 2 feet

more by the stern.
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consequently the metacentric diagram cannot be used, but a

separate calculation made for the water-plane at which the

vessel is floating.

On the metacentric diagram is placed also the position of

the centre of gravity of the ship under certain conditions. For

a merchant ship these conditions may vary considerably owing
to the nature of the cargo carried. There are two conditions

for which the G.G. may be readily determined, viz. the light

condition, and the condition when loaded to the load-line with

a homogeneous cargo. The light condition may be defined as

follows : No cargo, coal, stores, or any weights on board not

actually forming a part of the hull and machinery, but includ-

ing the water in boilers and condensers. The draught-lines for

the various conditions are put on the metacentric diagram, and

the position of the centre of gravity for each condition placed

in its proper vertical position. The various values for GM, the

metacentric height, are thus obtained :

On the left of the diagram are placed, at the various water-

lines, the mean draught, displacement, and tons per inch.

There are two forms of section for which it is instructive to

construct the metacentric diagram.

1. A floating body of constant rectangular section.

2. A floating body of constant triangular section, the apex
of the triangle being at the bottom.

i. For a body having a constant rectangular section, the

moment of inertia of the water-plane is the same for all

draughts, but the volume of displacement varies. Suppose the

rectangular box is 80 feet long, 8 feet broad, 9 feet deep.

Then the moment of inertia of the water-plane for all draughts

is

1 /Q v <X\ v R2 10240
-j-o(oO X o^ X o =

3

The volumes of displacement are as follows :

Draught 6 inches

1 foot

2 feet

4
7

9

V = 80 X 8 X cubic feet

V = 80 X 8
V = So x 8 x 2

V = 8ox 8 X4
V = So X 8 X 7
V = 80 X 8 X 9
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and the values of BM are therefore as follows :

Draught 6 inches BM = icr66 feet

1 foot

2 feet

4 >,

7

9

BM = 5-33
BM = 2-66

BM = 1-33
BM = 076
BM = 0-59

The centre of buoyancy is always at half-draught, so that

its locus or path will be a straight line,
1 and if the values obtained

above are set off from the centres of buoyancy at the various

water-lines, we shall obtain the curve of transverse metacentres

as shown in Fig. 57 by the curve AA, the line BB being the

corresponding locus of the centres of buoyancy.

9-0.

FIG. 57.

2. For a floating body with a constant triangular section, the

locus of centres of buoyancy is also a straight line, because it is

always two-thirds the draught above the base.
1

Suppose the

triangular section to be 10 feet broad at the top and 9 feet deep,
the length of the body being 120 feet. In this case we must

calculate the moment of inertia of each water-plane and the

rolurne of displacement up to each. The results are found to

be as follows :

1 This may be seen by finding a few spots on this locus.
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Draught i foot ............ BM = o'2o feet

,, 2 feet ............ BM = 0-41 ,,

,, 4 ,, ............ BM = 0-82 ,,

6 ............ BM = 1-23

These values are set up from the respective centres of

buoyancy, and give the locus of transverse metacentres, which

is found to be a straight line, as shown by CC in Fig. 57, DD
being the locus of centres of buoyancy.

Approximation to Locus of Centres of Buoyancy
on the Metacentric Diagram. We have seen (p. 63) how
the distance of the centre of buoyancy below the L.W.L. can

be approximately determined. The locus of centres of buoyancy
in the metacentric diagram is, in most cases, very nearly straight

for the portion near the load-line, and if we could obtain easily

the direction the curve takes on leaving the position for the load

water-line, we should obtain a very close approximation to the

actual curve itself. It might be desirable to obtain such an

approximation in the early stages of a design, when it would

not be convenient to calculate the actual positions of the centre

of buoyancy, in order to accurately construct the curve.

Let be the angle the tangent to the curve of buoyancy at

the load condition makes with the horizontal, as in

Pig- 56;

A., the area of the load water-plane in square feet ;

V, the volume of displacement up to the load water-line

in cubic feet
;

^, the distance of the centre of buoyancy of the load

displacement below the load water-line in feet.

Then the direction of the tangent to the curve of buoyancy is

given by

Ah
tan0 = ^-

Each of the terms in the latter expression are known or can

be readily approximated to,
1 and we can thus determine the in-

clination at which the curve of centres of buoyancy will start,.

and this will closely follow the actual curve.

1 See Example 39, p. 131, for a further approximation.
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In a given case

A = 7854 square feet

// = 5-45 feet

V = 2140 x 35 cubic feet

so that

tan e = 7854 X S'4*

2140 X 35
= 0-572

J

Finding the Metacentric Height by Experiment.
Inclining Experiment. We have been dealing up to the

present with the purely geometrical aspect of initial stability,

viz. the methods employed and the principles involved in

finding the position of the transverse metacentre. All that is

needed in order to determine this point is the form of the

underwater portion of the vessel. But in order to know any-

thing about the vessel's initial stability, we must also know the

vertical position of the centre of gravity of the ship, and it is to

determine this point that the inclining experiment is performed.
This is done as the vessel approaches completion, when

weights that have yet to go on board can be determined

together with their final positions. Weights are shifted trans-

versely across the deck, and by using the principle explained on

p. 97, we can tell at once the horizontal shift of the centre of

gravity of the ship herself due to this shift of the weights on

board. The weight of the ship can be determined by calculating

the displacement up to the water-line she floats at, during the

experiment. (An approximate method of determining this

displacement when the vessel floats out of her designed trim

1 The best way to set off this tangent is, not to find the angle 6 in

degrees and then set it off by means of a protractor, but to set off a
horizontal line of 10 feet long (on a convenient scale), and from the end
set down a vertical line 572 feet long on the same scale. This will give

ocr ^*72
the inclination required, for tan = - =- = 0-572.base 10

This remark applies to any case in which an angle has to be set off very
accurately. A table of tangents is consulted and the tangent of the required
angle is found, and a similar process to the above is gone through.
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will be found on p. 140.) Using the notation employed on

p. 97, and illustrated by Fig. 49, we have

GG' =
w X d

Now, unless prevented by external forces, it is evident that

the vessel must incline over to such an angle that the centre of

gravity G' and the centre of buoyancy B' are in the same verti-

cal line (see Fig. 58), and, the angle of inclination being small,

FIG. 58.

M will be the transverse metacentre. If now we call B the

angle of inclination to the upright, GM being the " metacentric

height
"

GG'
tan0 =

j

GM = GG'

tan B

w X d

W x tan

using the value found above for GG'. The only term that we

do not yet know in this expression is tan 6, and this is found in

the following manner : At two or three convenient positions
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in the ship
1

(such as at bulkheads or down hatchways) plumb-
bobs are suspended from a point in the middle line of the ship,

and at a convenient distance from the point of suspension a

horizontal batten is fixed, with the centre line of the ship marked

on it, as shown by PQ in Fig. 58. Before the ship is inclined,

the plumb-line should coincide, as nearly as possible, with the

centre-line of the ship that is to say, the ship should be prac-

tically upright. When the ship is heeled over to the angle 0,

the plumb-line will also be inclined at the same angle, 6, to the

original vertical or centre line of the ship, and if / be the

distance of the horizontal batten below the point of suspension
in inches, and a the deviation of the plumb-line along the

batten, also in inches, the angle is at once determined, for

tan =
a

so that we can write-

in practice it is convenient to check the results obtained by

dividing the weight w into four equal parts, placing two sets on

one side and two sets on the other side, arranged as in Fig. 59.

The experiment is then performed in the following order :

(a) See if the ship is floating upright, in which case the

plumb-lines will coincide with the centre of the ship.

(it)
The weight (i), Fig. 59, is shifted from port to star-

board on to the top of weight (3) through the distance d feet,

say, and the deviations of the plumb-lines are noted when the

ship settles down at a steady angle.

(c) The weight (2) is shifted from port to starboard on to

the top of weight (4) through the distance d .feet, and the

deviations of the plumb-line noted.

(d) The weights (i) and (2) are replaced in their original

positions, when the vessel should again resume her upright

position.

1 If two positions are taken, one is forward and the other aft. If three

positions are taken, one is forward, one aft, and one amidships.
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(e) The weight (3) is moved from starboard to port, and

the deviations of the plumb-lines noted.

(/) The weight (4) is moved from starboard to port, and

the deviations of the plumb-lines noted.

With the above method of conducting the experiment,
1 and

using two plumb-lines, we obtain eight readings, and if three

plumb-lines were used we should obtain twelve readings. It is

important that such checks should be obtained, as a single result

might be rendered quite incorrect, owing to the influence of the

hawsers, etc. A specimen experiment is given on p. 119, in

which two plumb-lines were used. The deviations obtained

mrti

FIG. 59.

are set out in detail, the mean deviation for a shift of 1 2-^ tons

through 36 feet being 5^- inches, or the mean deviation for a

shift of 25 tons through 36 feet is io~ inches.

Precautions to be taken when performing an IncliningExperi-
ment. A rough estimate should be made of the GM expected
at the time of the experiment ;

the weight of ballast can then be

determined which will give an inclination of about 4 or 5 when

one-half is moved a known distance across the deck. The weight
of ballast thus found can then be got ready for the experiment.

A personal inspection should be made to see that all weights

likely to shift are efficiently secured, the ship cleared of all

1 There is a slight rise of G, the centre of gravity of the ship, in this

rnethod ; but the error involved is inappreciable.
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free water, and boilers either emptied or run up quite full.

Any floating stages should be released or secured by very slack

painters.

If possible a fine day should be chosen, with the water calm

and little wind. All men not actually employed on the experi-

ment should be sent ashore. Saturday afternoon or a dinner

hour is found a convenient time, since then the majority of

the workmen employed finishing the ship are likely to be away.
The ship should be hauled head or stern on to the wind,

if any, and secured by hawsers at the bow and stern. When

taking the readings, these hawsers should be slacked out, so as

to ensure that they do not influence the reading. The ship

should be plumbed upright before commencing.
An account should be taken, with positions of all weights to

be placed on board to complete, of all weights to be removed,
such as yard plant, etc., and all weights that have to be shifted.

The following is a specimen report of an inclining experi-

ment :

Report on Inclining Experiment performed on " " on
, 189-,

at . Density of water cubicfeet to the ton.

Draught of water ... ... ... ... 1 6' 9" forward.

,, ,, 22' 10" aft.

Displacement in tons at this draught ... ... 5372

The wind was slight, and the ship
was kept head to wind during the

experiment. Ballast used for inclining, 50 tons. Lengths of pendulums,
two in number, 15 feet. Shift of ballast across deck, 36 feet.

Experiment I, 12$ tons port to starboard

2, ia|
Ballast replaced, zero checked ......
Experiment 3, 12 \ tons starboard to port

4, 12*

Deviation of pendulum in 15 feet.

Forward. Aft.

lot"

right

s*"

The condition of the ship at the time of inclining is as defined below :

Bilges dry.
Water-tanks empty.
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No water in boilers, feed-tanks, condensers, distillers, cisterns, etc.

Workmen on board, 66.

Tools on board, 5 tons.

Masts and spars complete.
No boats on board.

Bunkers full.

Anchors and cables, complete and stowed.

No provisions or stores on board.

Engineers' stores, half on board.

Hull complete.

The mean deviation in 15 feet for a shift of 25 tons through 36 feet is

lo^j inches = io -

3i2 inches.

= 2_5 . x_36_xjs_x_i_2 =
10-312 x 5372

The ship being in an incomplete condition at the time of

the inclining experiment, it was necessary to take an accurate

account of all weights that had to go on board to complete,
with their positions in the ship, together with an account of

all weights that had to be removed, with their positions. The
total weights were then obtained, together with the position of

their final centre of gravity, both in a longitudinal and vertical

direction. For the ship of which the inclining experiment is

given above, it was found that to fully complete her a total

weight of 595 tons had to be placed on board, having its

centre of gravity n feet before the midship ordinate, and 3*05

feet below the designed L.W.L. Also 63 tons of yard plant,

men, etc., had to be removed, with centre of gravity 14 feet

abaft the midship ordinate, and 15 feet above the designed
L.W.L. The centre of buoyancy of the ship at the experi-

mental water-line was io'8 feet abaft the midship ordinate,

and the transverse metacentre at this line was calculated at

3' 14 feet above the designed L.W.L.
We may now calculate the final position of the centre of

gravity of the completed ship as follows, remembering that

in the experimental condition the centre of gravity must be

in the same vertical line as the centre of buoyancy. The
vertical position of G in the experimental condition is found

by subtracting the experimental GM, viz. 2*92 feet, from the

height of the metacentre above the L.W.L. as given above,

viz. 3*14 feet.
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GM. This distance depends upon two things : the position of

G, the centre of gravity of the ship ; and the position of M, the

transverse metacentre. The first is dependent on the vertical

distribution of the weights forming the structure and lading of

the ship, and its position in the ship must vary with differences

in the disposition of the cargo carried. The transverse meta-

centre depends solely upon the form of the ship, and its

position can be completely determined for any given draught
of water when we have the sheer drawing of the vessel. There

are two steps to be taken in finding its position for any given

ship floating at a certain water-line.

1. We must find the vertical position of the centre of

buoyancy, the methods adopted being explained in Chapter II.

2. We then find the distance separating the centre of

buoyancy and the transverse metacentre, or BM, as explained

in the present chapter.

By this means we determine the position of M in the ship.

The methods of estimating the position of G, the centre

of gravity for a new ship, will be dealt with separately in

Chapter VI. ;
but we have already seen how the position of G

can be determined for a given ship by means of the inclining

experiment. Having thus obtained the position of M and G in

the ship, we get the distance GM, or the metacentric height.

The following table gives the values of the metacentric height

in certain classes of ships. For fuller information reference

must be made to the works quoted at the end of the book.

Type of ship. Values of GM.

Harbour vessels, as tugs, etc.

Modern protected cruisers ...

Modern British battleships .

Older central citadel armourclads

Shallow-draught gunboats for river service

15 to 1 8 inches

2 to 2j feet

3i feet

4 to 8 feet

12 feet

Merchant steamers (varying according to \ i to 7 feet
the nature and distribution of the cargo) / j

Sailing-vessels , 3 to 3i feet

The amount of metacentric height given to a vessel is based

largely upon experience with successful ships. In order that
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a vessel may be "
stiff" that is, difficult to incline by external

forces as, for example, by the pressure of the wind on the

sails the metacentric height must be large. This is seen by
reference to the expression for the moment of statical stability

at small angles of inclination from the upright, viz.

W X GM sin (see p. 94)

W being the weight of the ship in tons
;
6 being the angle of

inclination, supposed small. This, being the moment tending

to right the ship, is directly dependent on GM. A " crank
"

ship is a ship very easily inclined, and in such a ship the

metacentric height is small. For steadiness in a seaway the

metacentric height must be small.

There are thus two opposing conditions to fulfil

1. The metacentric height GM must be enough to enable

the ship to resist inclination by external forces. This is espe-

cially the case in sailing-ships, in order that they may be able

to stand up under canvas without heeling too much. In the

case of the older battleships with short armour belts and

unprotected ends, sufficient metacentric height had to be pro-

vided to allow of the ends being riddled, and the consequent
reduction of the moment of inertia of the water-plane.

2. The metacentric height must be moderate enough (if

this can be done consistently with other conditions being

satisfied) to make the vessel steady in a seaway. A ship which

has a very large GM comes back to the upright very suddenly
after being inclined, and consequently a vessel with small

GM is much more comfortable at sea, and, in the case of a

man-of-war, affords a much steadier gun platform.

In the case of sailing-ships, a metacentric height of from

3 to 3^- feet is provided under ordinary conditions of service,

in order to allow the vessel to stand up under her canvas. It is,

however, quite possible that, when loaded with homogeneous

cargoes, as wool, etc., this amount cannot be obtained, on

account of the centre of gravity of the cargo being high up in

the ship. In this case, it would be advisable to take in water

or other ballast in order to lower the centre of gravity, and
thus increase the metacentric height.
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In merchant steamers the conditions continually vary on

account of the varying nature and distribution of the cargo

carried, and it is probable that a GM of i foot should be the

minimum provided when carrying a homogeneous cargo (con-

sistently with satisfactory stability being obtained at large

inclinations). There are, however, cases on record of vessels

going long voyages with a metacentric height of less than

i foot, and being reported as comfortable and seaworthy. Mr.

Denny (Transactions of the Institution of Naval Architects\

1896) mentioned a case of a merchant steamer, 320 feet long

(carrying a homogeneous cargo), which sailed habitually with

a metacentric height of o'6 of a foot, the captain reporting her

behaviour as admirable in a seaway, and in every way com-

fortable and safe.

Effect on Initial Stability due to the Presence of

Free Water in a Ship. On reference to p. 118, where the

inclining experiment for obtaining the vertical position of the

centre of gravity of a ship is explained, it will be noticed that

special attention is drawn to the necessity for ascertaining
that no free water is allowed to remain in the ship while the

experiment is being performed. By free water is meant water

having a free surface. In the case of the boilers, for instance,

they should either be emptied or run up quite full. We now

proceed to ascertain the necessity for taking this precaution.

If a compartment, such as a ballast tank in the double bottom,
or a boiler, is run up quite full, it is evident that the water will

have precisely the same effect on the ship as if it were a solid

body having the same weight and position of its centre of

gravity as the water, and this can be allowed for with very
little difficulty. Suppose, however, that we have on board in a

compartment, such as a ballast tank in the double bottom,
a quantity of water, and the water does not completely fill the

tank, but has a free surface, as wl, Fig. 6o.
J

If the ship is

heeled over to a small angle 6, the water in the tank must

adjust itself so that its surface w'l' is parallel to the level water-

line W'L'. Let the volume of either of the small wedges wsw' ,

1st be z'o and g, ^ the positions of their centres of gravity, b, b'

1

Fig. 60 is drawn out of proportion for the sake of clearness.
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being the centres of gravity of the whole volume of water in

the upright and inclined positions respectively. Then, if Vn

be the total volume of water in the tank, we have

V X bb' = v
(} X gg

1

and bb' = ^ X gg'

and bb' is parallel to gg. Now, in precisely the same way as we

FIG. 60.

found the moment of transference of the wedges WSW, LSL',
in Fig. 45, we can find the moment of transference of the small

wedges wsw', 1st, viz.

where / is the moment of inertia of the free surface of the water

in the tank about a fore-and-aft axis through s
; and 6 is the

circular measure of the angle of inclination.

Substituting this value for v X gg
1

,
we have

ix

Draw the new vertical through b', meeting the middle line in ;//
;

then

bb' = bm x
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and consequently

/ x
bin x = =-

*0

and bm ^~
o

Now, if the water were solid its centre of gravity would be

at b both in the upright and inclined conditions, but the weight
of the water now acts through the point b' in the line b'm, and

its effect on the ship is just the same as if it were a solid

weight concentrated at the point ///. So that, although b is

the actiial centre ofgravity of the water, its effect on the ship,

when inclined through ever so small an angle, is the same as

though it were at the point ;//, and in consequence of this the

point m is termed the virtual centre of gravity of the water.
1

This may be made clearer by the following illustrations :

1. Suppose that one instant the water is solid, with its

centre of gravity at b, and the following instant it became water.

Then, for small angles of inclination, its effect on the ship would

be the same as if we had raised its weight through a vertical

distance bm from its actual to its virtual centre of gravity.

2. Imagine a pendulum suspended at m, with its bob at b.

On the ship being inclined to the small angle 6, the pendulum
will take up the position mb\ and this corresponds exactly to

the action of the water.

We thus see that the centre of gravity of the ship cannot be

regarded as being at G, but as having risen to G
,
and ifW be

the weight of water in tons = (the water being supposed
O

salt), we have
W X GG = W x bin

= V"
X bm

35
and therefore

1 See a paper by Mr. W. Hok, at the Institution of Naval Architects,

1895, on "The Transverse Stability of Floating Vessels containing

Liquids, with Special Reference to Ships carrying Oil in Bulk." See also

a paper in the "Transactions of the Institution of Engineers and Ship-
builders in Scotland for 1889," by the late Professor Jenkins, on the

stability of vessels carrying oil in bulk.
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V x bm V,,GG =
,y

= ^ X bm (V = volume of displacement)

But we have seen that

bm ='
V

and therefore

CT" -- v -rG
( ,

-
y X ^

-
y

The new moment of stability at the angle 6 is

W X G M x sin 6 = W x (GM - GG ) sin 6

= W X ( GM -
*.- ) sin

\ V /

the metacentric height being reduced by the simple expres-

sion v . We notice here that the amount of water does not

effect the result, but only the moment of inei-tia of the free

surface. The necessity for the precaution of clearing all free

water out of a ship on inclining is now apparent. A small

quantity of water will have as much effect on the position of

the centre of gravity, and therefore on the trustworthiness of

the result obtained, as a large quantity of water, provided it

has the same form of free surface. If a small quantity of

water has a large free surface, it will have more effect than

a very large quantity of water having a smaller free surface.

Example. A vessel has a compartment of the double bottom at the
middle line, 60 feet long and 30 feet broad, partially filled with salt water.
The total displacement is 9100 tons, and centre of gravity of the ship and
water is o -26 feet below the water-line. Find the loss of metacentric

height due to the water having a free surface.

We have here given the position of the centre of gravity of the ship and
the water. The rise of this centre of gravity due to the mobility of the

water is, using the above notation
*

V
and / = T

'

5(6o X 30) x (30)'
= 5 x (30)'

Since the free surface is a rectangle 60 feet long and 30 broad

and V = 9100 X 35 cubic feet

5 X 3O3

therefore the loss in metacentric height = = 0^424 feet
9100 x 35



128 Theoretical Naval Architecture.

EXAMPLES TO CHAPTER III.

1. Find the circular measure of 5J, io|, 15!.
AftS, O'OQSQ^ y

^

2. Show that sin 10 is one-half per cent, less in value than the circular

measure of 10, and that tan 10 is one per cent, greater in value than the

circular measure of 10.

3. A cylinder weighing 500 Ibs., whose centre of gravity is 2 feet from
the axis, is placed on a smooth table and takes up a position of stable

equilibrium. It is rolled along parallel to itself through an angle of 60.
What will be the tendency then to return to the original position ?

Ans. 866 foot-lbs.

4. Find the moment of inertia about the longest axis through the centre

of gravity, of a figure formed of a square of side 2a, having a semicircle at

each end.
/i6 + '

Ans. (
-

V 12

5. Find the moment of inertia of a square of side 2a about a diagonal.
Ans. a*.

6. A square has a similar square cut out of its centre such that the

moment of inertia (about a line through the centre parallel to one side) of

the small square and of the portion remaining is the same. What pro-

portion of the area of the original square is cut out ?

Ans. 071 nearly.

7. A vessel of rectangular cross-section throughout floats at a constant

draught of 10 feet, and has its centre of gravity in the load water-plane.
The successive half-ordinates of the load water-plane in feet are o'5, 6, 12,

16, 15, 9, o ; and the common interval 20 feet. Find the transverse

metacentric height.
Ans. 8 inches.

8. A log of fir, specific gravity o -

5, is 12 feet long, and the section is

2 feet square. What is its transverse metacentric height when floating in

equilibrium in fresh water ?

Ans. o'47 foot.

9. The semi-ordinates of a water-plane 34 feet apart are o'4, 13 '7,

25-4, 32-1, 34*6, 35-0, 34-9, 34-2, 32-1, 23-9, 6-9 feet respectively. Find
its moment of inertia about the centre line.

Ans. 6,012,862.
10. The semi-ordinates of the load water-plane of a vessel are o, 3*35,

6-41, 8'63, 9'93, 10-44, io -

37, 9'94, 8-96, 7'i6, and 2
-

5 feet respectively.
These ordinates being 21 feet apart, find

(1) The tons per inch immersion.

(2) The distance between the centre of buoyancy and the transverse

metacentre, the load displacement being 484 tons.

Ans. (i) 773 tons; (2) 5*2 feet nearly.
11. The semi-ordinates, l6'6 feet apart, of a vessel's water-plane are

0-2, 2-3, 6-4, 9-9, 12-3, 13-5, 13-8, 137, 12-8, 10-6, 6-4, 1-9, 0-2 feet

respectively, and the displacement up to this water-plane is 220 tons. Find
the length of the transverse BM.

Ans. 2O'6 feet.

12. A vessel of 613 tons displacement was inclined by moving 30 cwt.

of rivets across the deck through a distance of 22' 6". The end of a plumb-
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line 10 feet long moved through z\ inches. What was the metacentric

height at the time of the experiment?
Atts. 2'93 feet.

13. The semi-ordinates of a ship's water-plane 35 feet apart are, com-

mencing from forward, o'4, 7'i2, 15 '28, 21 '88, 25-62, 26'9, 26-32, 24-42,

2O'8, I5'I5- 6-39 feet respectively. There is an after appendage of 116

square feet, with its centre of gravity 180 feet abaft the midship ordinate.

Find

(1) The area of the water-plane.
(2) The tons per inch immersion.

(3) The distance of the centre of flotation abaft amidships.
(4) The position of the transverse metacentre above the L.W.L., taking

the displacement up to the above line as 5372 tons, and the

centre of buoyancy of this displacement 8'6l feet below the

L.W.L.
Ans. (I) 1 3, 292 square feet

; (2) 31-6 tons; (3) 14-65 feet ; (4) 3-34
feet.

14. A ship displacing 9972 tons is inclined by moving 40 tons 54 feel

across the deck, and a mean deviation of 9^ inches is obtained by pendulums
1 5 feet long. Find the metacentric height at the time of the operation.

Ans. 4'i8 feet.

15. A ship weighing 10,333 tons was inclined by shifting 40 tons 52
feet across the deck. The tangent of the angle of inclination caused was
found to be 0-05. If the transverse metacentre was 475 feet above the

designed L. W.L., what was the position of the centre of gravity of the ship
at the time of the experiment ?

Ans. 073 foot above the L.W.L.
1 6. A vessel of 26 feet draught has the moment of inertia of the L.W. P.

about a longitudinal axis through its centre of gravity 6,500,000 in foot-

units. The area of the L.W.P. is 20,000 square feet, the volume of dis-

placement 400,000 cubic feet, and the centre of gravity of the ship may be
taken in the L.W.P. Approximate to the metacentric height.

Ans. 5^ feet.

17. Prove the rule given on p. 60 for the distance of the centre of

gravity of a semicircle of radius a from the diameter, viz. ~-a, by finding
3*"

the transverse BM of a pontoon of circular section floating with its axis in

the surface of the water.

(M in this case is in the centre of section.)
18. Take a body shaped as in Kirk's analysis, p. 80, of length 140

feet ; length of parallel middle body, 100 feet ; extreme breadth, 30 feet ;

draught, 12 feet. Find the transverse BM.
Ans. 57 feet.

19. A vessel of 1792 tons displacement is inclined by shifting 5 tons

already on board transversely across the deck through 20 feet. The end
of a plumb-line 15 feet long moves through 5^ inches. Determine the

metacentric height at the time of the experiment.
Ans. I '9 1 feet.

20. A vessel of displacement 1 722 tons is inclined by shifting 6 tons of

ballast across the deck through 22\ feet. A mean deviation of loj inches

is obtained with pendulums 15 feet long. The transverse metacentre is

1 5 '28 feet above the keel. Find the position of the centre of gravity of the

ship with reference to the keel.

Ans. 13*95 feet.

K
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21. The ship in the previous question has 169 tons to go on board at

10 feet above keel, and 32 tons to come out at 20 feet above keel. Find
the metacentric height when completed, the transverse metacentre at the

displacement of 1859 tons being 15 '3 feet above keel.

Ans. I '8 feet.

22. A vessel of 7000 tons displacement has a weight of 30 tons moved

transversely across the deck through a distance of 50 feet, and a plumb-bob
hung down a hatchway shows a deviation of 12 inches in 15 feet. What
was the metacentric height at the time of the operation ?

Ans. 3 '2 1 feet.

23. A box is 200 feet long, 30 feet broad, and weighs 2000 tons. Find
the height of the transverse metacentre above the bottom when the box is

floating in salt water on an even keel. Ans. I2'26 feet.

24. Show that for a rectangular box floating at a uniform draught of d

feet, the breadth being 12 feet, the distance of the transverse metacentre
,y2 I 2 .

above the bottom is given by feet, and thus the transverse meta-

centre is in the water-line when the draught is 4/9 feet.

25. A floating body has a constant triangular section. If the breadth

at the water-line is *J 2. times the draught, show that the curve of metacentres
in the metacentric diagram lies along the line drawn from zero draught at

45 to the horizontal, and therefore the metacentre is in the water-line for

all draughts.
26. A floating body has a square section with one side horizontal.

Show that the transverse metacentre lies above the centre of the square
so long as the draught does not much exceed 21 per cent, of the depth of

the square. Also show that as the draught gets beyond 21 per cent, of the

depth, the metacentre falls below the centre and remains below until

the draught reaches 79 per cent, of the depth ; it then rises again above
the centre of the .square, and continues to rise as long as any part of the

square is out of the water.

(This may be done by constructing a metacentric diagram, or by using the

methods of algebra, in which case a quadratic equation has to be solved.)

27. Show that a square log of timber of 12 inches side, 10 feet long, and

weighing 320 Ibs., must be loaded so that its centre of gravity is more than

I inch below the centre in order that it may float with a side horizontal

in water of which 35 cubic feet weigh i ton.

28. A prismatic vessel is 70 feet long. The section is formed at the

lower part by an isosceles triangle, vertex downwards, the base being 20

feet, and the height 5 feet ; above this is a rectangle 20 feet wide and 5 feet

high. Construct to scale the metacentric diagram for all drafts.

29. A vessel's load water-plane is 380 feet long, and 75 feet broad, and
its moment of inertia in foot-units about the centre line works out to

8,000,000 about. State whether you consider this a reasonable result to

obtain, the water-plane not being very fine.
~Dt

30. Find the value of the coefficient a in the formula BM = a .

referred to on p. 107, for floating bodies having the following sections

throughout their length :

(a) Rectangular cross-section.

(b) Triangular cross-section, vertex down.

(c) Vertical-sided for one half the draught, the lower half of the section

being in the form of a triangle.
Aits, (a) O'OS ; (6) O'l6 ; (<:) O'll.
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For ordinary ships the value of a will lie between the first and last of

these.

31. A lighter in the form of a box is 100 feet long, 20 feet broad, and
floats at a constant draught of 4 feet. The metacentric height when empty
is 6 feet. Two bulkheads are built 10 feet from either end. Show that a

small quantity of water introduced into the central compartment will render

the lighter unstable in the upright condition.

32. At one time, in ships which were found to possess insufficient sta-

bility, girdling was secured to the ship in the neighbourhood of the water*

line. Indicate how far the stability would be influenced by this means.

33. A floating body has a constant triangular section. If the breadth

at the water-line is equal to the draught, show that the locus of metacentres

in the metacentric diagram mikes an angle with the horizontal of about 40.
34. A cylinder is placed into water with its axis vertical. Show that if

the centre of gravity is in the water-plane, the cylinder will float upright if

the radius -i- the draught is greater than ^Jz.

35. In a wholly submerged body show that for stable equilibrium the

centre of gravity must lie below the centre of buoyancy.
36. A floating body has a constant triangular section, vertex down-

wards, and has a constant draught of 12 feet, the breadth at the water-line

being 24 feet. The keel just touches a quantity of mud, specific gravity 2.

The water-level now falls 6 feet : find the amount by which the metaccntrio

height is diminished due to this.

Ans. 2\ feet about.

37. A floating body of circular section 6 feet in diameter has a meta-

centric height of i '27 feet. Show that the centre of buoyancy and centre

of gravity coincide, when the body is floating with the axis in the surface.

38. It is desired to increase the metacentric height of a vessel which is

being taken in hand for a complete overhaul. Discuss the three following
methods of doing this, assuming the ship has a metacentric diagram as in

Fig. 56, the extreme load draught being 15 feet :

(1) Placing ballast in the bottom.

(2) Removing top weight.

(3) Placing a girdling round the ship in the neighbourhood of the

water-line.

39. Show that the angle in Fig. 56 is between 29 and 30 for a

vessel whose coefficient of L.W.P. is 0-75, and whose block coefficient

of displacement is o'55. In any case, if these coefficients are denoted by

// and k respectively, show that tan # = 3 + ZT approximately (use Nor-
\)K

mand's formula, p. 63).



CHAPTER IV.

LONGITUDINAL METACENTRE, LONGITUDINAL BM,
CHANGE OF TRIM.

Longitudinal Metacentre. We now have to deal with

inclinations in a fore-and-aft or longitudinal direction. We
do not have the same difficulty in fixing on the fore-and-aft

position of the centre of gravity of a ship as we have in fixing

its vertical position, because we know that if a ship is floating

steadily at a given water-line, the centre of gravity must be in

the same vertical line as the centre of buoyancy, by the con-

ditions of equilibrium laid down on p. 89. It is simply a

matter of calculation to find the longitudinal position of the

centre of buoyancy of a ship when floating at a certain water-

line, if we have the form of the ship given, and thus the fore-

and-aft position of the centre of gravity is determined.

We have already dealt with the inclination of a ship in a

transverse direction, caused by shifting weights already on

board across the deck
;
and in a precisely similar manner we

can incline a ship in a longitudinal or fore-and-aft direction by

shifting weights along the deck in the line of the keel. The
trim of a ship is the difference between the draughts of water

forward and aft. Thus a ship designed to float at a draught
forward of 1 2 feet, and a draft aft of 1 5 feet, is said to trim 3 feet

by the stern.

We have, on p. 93, considered the definition of the trans-

verse metacentre, and the definition of the longitudinal meta-

centre is precisely analogous.

For a given water-line WL of a vessel, let B be the centre

of buoyancy (see Fig. 61), and BM the vertical through it.
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Suppose the trim of the vessel to change slightly,
1 the vessel

retaining the same volume of displacement, B' being the new

centre of buoyancy, and B'M the vertical through it, meeting

FIG. 61.

BM in M. Then the point M is termed the longitudinal

metacentre.

The distance between G, the centre of gravity of the ship,

and M, the longitudinal metacentre, is termed the longitudinal

me/acentric height.

Formula for finding the Distance of the Longi-
tudinal Metacentre above the Centre of Buoyancy.
Let Fig. 62 represent the profile of a ship floating at the water-

line W'L', the original water-line being WL. The original

trim was AW BL
;
the new trim is AW - BL'. The change

of trim is

(AW - BL) - (AW -
BL') = WW -f LL'

i.e. the change of trim is the sum of the changes of draughts

forward and aft. This change, we may suppose, has been

caused by the shifting of weights from aft to forward. The

inclination being regarded as small, and the displacement

remaining constant, the line of intersection of the water-planes

WL, W'L' must pass through the centre of gravity of the water-

plane WL, or, as we have termed it, the centre of flotation,

in accordance with the principle laid down on p. 94. This

centre of flotation will usually be abaft the middle of length,

and this introduces a complication which makes the calculation

for the longitudinal metacentre more difficult than the corre-

1 Much exaggerated in the figure.
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spending calculation for the transverse metacentre. In this

latter case, it will be remembered that the centre of flotation is

in the middle line of the water-plane.

A.

FIG. 62.

In Fig. 62

Let B be the centre of buoyancy when floating at the

water-line WL
;

B', the centre of buoyancy when floating at the water-

line W'L'
;

FF, the intersection of the water-planes WL, W'L'
;

v, the volume of either the immersed wedge FLL' or

the emerged wedge FWW' ;

g, g
1

,
the centres of gravity of the wedges WFW', LFL'

respectively ;

V, the volume of displacement in cubic feet
;

0, the angle between the water-lines WL, W'L', which

is the same as the angle between BM and B'M

(this angle is supposed very small).

We have, using the principle laid down on p. 96

v X gg' = V X BB'
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P RU' - ? ' X&
or x>r> = ^

But BB' = BM X 6 (0 is in circular measure)

/. BM x = -^^
The part of this expression that we do not know is v x gg',

or the moment of transference of the wedges. At P take a

small transverse slice of the wedge FLL', of breadth in a fore-

and-aft direction, dx
; length across, 2y ;

and distance from

F, x. Then the depth of the slice is

x x 9

and the volume is 2y X x6 x dx

This is an elementary volume, analogous to the elementary
area y . dx used in finding a large area. The moment of this

elementary volume about the transverse line FF is

zyx . 9 . dx X x
or 2yx* . . dx

If we summed all such moments as this for the length FL,
we should get the moment v X ~Fg',

and for the length FW,
v X F^, or for the whole length, v x gg' ', therefore, using our

ordinary notation

v x g = J2yx~ - 9 . dx
=

26/}'x
2 .dx (9 being constant)

We therefore have

20fyx
i .dxBM X 9 = - "

y"
2 \'yx* . dx

or BM = v

Referring to p. 99, it will be seen that we defined the

moment of inertia of an area about a given axis as

JVA x /
where dA is a small elementary area

;

y its distance from the given axis.

Consider, now, the expression obtained, 2\yx" . dx. The

elementary area is 2y . dx, and x is its distance from a
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transverse axis passing through the centre of flotation. W
may therefore say

where I is the moment of inertia of the water-plane about a

transverse axis passing through the centre of flotation. It will

be seen at once that this is the same form of expression as for

the transverse BM.
The method usually adopted for finding the moment of

inertia of a water-plane about a transverse axis through the

centre of flotation is as follows
*

:

We first find the moment of inertia about the ordinary

midship ordinate. If we call this I, and y the distance of the

centre of flotation from the midship ordinate, we have, using

the principle given on p. 100

I = I + Ar
or I = I - A/

The method actually adopted in practice will be best under-

stood by working the following example.

Numbers
of

ordinates.
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In column 2 of the table are given the lengths of semi-

ordinates of a load water-plane corresponding to the numbers

of the ordinates in column i. The ordinates are 7*1 feet

apart. It is required to find the longitudinal BM, the dis-

placement being 91-6 tons in salt water.

The distance apart of the ordinates being 7-1 feet, we
have

Area = 163-42 x (\ X 7*1) X 2

= 773'5 square feet

Distance of centre of gravity of
) 56-86 x 7*1 = 2-47 feet
) 56-
f
=

J 1water-plane abaft No. 6 ordinate J 1 63-42

(the stations are numbered from forward).

The calculation up to now has been the ordinary one

for finding the area and position of the centre of gravity.

Column 4 is the calculation indicated by the formula

Area = 2Jy . dx

Column 6 is the calculation indicated by the formula

Moment =
2\'yx . dx

It will be remembered that in column 5 we do not put

down the actual distances of the ordinates from No. 6 ordinate,

but the number of intervals away; the distance apart of the

ordinates being introduced at the end. By this means the

result is obtained with much less labour than if column 5

contained the actual distances. The formula we have for the

moment of inertia is 2/y . x2
. dx. We follow a similar process

to that indicated above ;
we do not multiply the ordinates by

the square of the actual distances, but by the square of the

number of intervals away, leaving to the end the multiplication

by the square of the interval. Thus for ordinate No. 2 the

actual distance from No. 6 is 4x7-1 = 28-4 feet. The

square of this is (4)- x (7'i)
2

- For ordinate No. 4 the square of

the distance is (2)
2 X (7'i)

2
. The multiplication by (7'i)

2 can

be done at the end. In column 7 is placed the number of

intervals from No. 6, as in column 5 ; and if the products in

column 6 are multiplied successively by the numbers in
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column 7, we shall obtain in column 8 the ordinates put

through Simpson's rule, and also multiplied by the square of

the number of intervals from No. 6 ordinate. The whole of

column 8 is added up, giving a result 959*14. To obtain the

moment of inertia about No. 6 ordinate, this has to be multi-

plied as follows :

(a) By one-third the common interval to complete Simp-

son's rule, or i x 7'i.

(/>) By the square of the common interval, for the reasons

fully explained above.

(c} By two for both sides.

We therefore have the moment of inertia of the water-plane

about No. 6 ordinate

959-14 x ( X 7-1) X (7'i)
2 X 2 = 228,858

The moment of inertia about a transverse axis through the

centre of flotation will be less than this by considering the

formula I = I + Ay2
,
where I is the value found above about

No. 6 ordinate, and I is the moment of inertia we want. We
found above that the area A = 773-5 square feet, and r = 2-47

feet :

/. I,,
= 228,858 - (773-5 x 2-47-)

= 224,139

The displacement up to this water-plane is 91-6 tons, and

the volume of displacement is

91-6 x 35 = 3206 cubic feet

The longitudinal BM = ^
224139= ^ = 69-9 feet
3206

Approximate Formula for the Height of the Longi-
tudinal Metacentre above the Centre of Buoyancy.
The following formula is due to M. J. A. Normand, M.I.N.A.,

1

and is found to give exceedingly good results in practice :

Let L be the length on the load water-line in feet ;

B, the breadth amidships in feet
;

1 See "Transactions of the Institution of Naval Architects," 1882.
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V, the volume of displacement in cubic feet
;

A, the area of the load water-plane in square feet.

Then the height of the longitudinal metacentre above the centre

of buoyancy
A3 X LH = o'o7^i;=:
---

^,

In the example worked above, the breadth amidships was

i4'42 feet; and using the formula, we find

H = 67*5 feet nearly

This compares favourably with the actual result of 69-9 feet.

The quantities required for the use of the formula would all be

known at a very early stage of a design and a close approxima-
tion to the height H can thus very readily be obtained. A
formula such as this is useful as a check on the result of the

calculation for the longitudinal BM.
We may also obtain an approximate formula in the same

manner as was done for the transverse BM on p. 107. Using
a similar system of notation, we may say

Moment of inertia of L.W.P. about a trans-

verse axis through the centre of flotation
= ;/' X L:l X B

;/ being a coefficient of a similar nature to // used on p. 103.

Volume of displacement = /C'xLxBxD
_

' X L8 x B~
kx L X B XT)

where b is a coefficient obtained from the coefficients ;/' and /.

Sir William White, in the " Manual of Naval Architecture," says,

with reference to the value of
/>,

that "the value 0^075 may be

used as a rough approximation in most cases
; but there are

many exceptions to its use." If this approximation be applied

to the example we have worked, the mean moulded draught

being 5-8 feet

The value of H = 65 feet
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This formula shows very clearly that the length of a ship
is more effective than the draught in determining the value

of the longitudinal BM in any given case. For vessels which
have an unusual proportion of length to draught, the values

of the longitudinal BM found by using this formula will not

be trustworthy.

To estimate the Displacement of a Vessel when
floating out of the Designed Trim. The following
method is found useful when it is not desired to actually

calculate the displacement from the drawings, and a close

approximation is sufficiently accurate. Take a ship floating

parallel to her designed L.W.L.
;
we can at once determine

the displacement when floating at such a water-line from the

curve of displacement (see p. 23). If now a weight already
on board is shifted aft, say, the ship will change trim, and she

will trim more by the stern than designed. The new water-

plane must pass through the centre of gravity of the original

water-plane, or, as we have termed it, the centre of flotation, and

FIG. 63.

the displacement at this new water-line will be, if the change of

trim is not very considerable, the same as at the original water-

line. Now, when taking the draught of water a vessel is

actually floating at, we take the figures set up at or near the

forward and after perpendiculars. These draught-marks should

be either at the perpendiculars or equally distant from them.

The draughts thus obtained are added together and divided

by two, giving us the mean draught. Now run a line parallel to

the designed water-line at this mean draught, as in Fig. 63, where

WL represents the actual water-line, and wl the line just drawn.

It will not be true that the displacement of the ship is the same

as that given by the water-line wl. Let F be the centre of
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flotation of the water-line a'/, and draw W'L' through F parallel

to WL. Then the actual displacement will be that up to W'L',

which is nearly the same as that up to a.'/, with the displacement
of the layer WW'L'L added. The displacement up to wl is

found at once from the curve of displacement. Let T be the

tons per inch at wl, and therefore very nearly the tons per inch

at W'L' and WL. SF, the distance the centre of flotation of

the water-plane wl is abaft the middle of length, is supposed
known, and equals d inches, say. Now, the angle between wl
and WL is given by

w\V + /L
tan 6 =

length of ship

amount out of trim

length of ship

But if x is the thickness of layer in inches between W'L' and

WL, we also have in the triangle SFH

tan =
"-J very nearly (for small angles tan = sin

very nearly)

and accordingly x may be determined. This, multiplied by
the tons per inch T, will give the displacement of the layer.

The following example will illustrate the above :

Example. A vessel floats at a draught of 16' 5$" forward, 23' i" aft,

the normal trim being 2 feet by the stern. At a draught of 19' gj", her

displacement, measured from the curve of displacement, is 5380 tons, the

tons per inch is 31 'I tons, and the centre of flotation is I2'9 feet abaft

amidships. Estimate the ship's displacement.
The difference in draught is 23' ij" 16' 5J" = 6' 8", or 4' 8" out of

trim. The distance between the draught-marks is 335 feet, and we
therefore have for the thickness of the layer

56
12 X 12-9 X , / _ = 2-15 inches

335 x lz

The displacement of the layer is therefore

2-15 X 31*1 = 67 tons

The displacement is therefore

5380 + 67 = 5447 tons nearly

Change of Trim due to Longitudinal Shift of

Weights already on Board. We have seen that change
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of trim is the sum of the change of draughts forward and aft, and

that change of trim can be caused by the shift of weights on

board in a fore-and-aft direction. We have here an analogous
case to the inclining experiment in which heeling is caused by

shifting weights in a transverse direction. In Fig. 64, let w be

d'-

B'

FlG. 64.

a weight on the deck when the vessel is floating at the water-

line WL, G being the position of the centre of gravity. Now

suppose the weight w to be shifted forward a distance of d feet.

G will, in consequence of this, move forward parallel to the line

joining the original and final positions of w, and if W be the

displacement of the ship in tons, G will move to G' such that

w X d
WGG' =

Now, under these circumstances, the condition of equilibrium

is not fulfilled if the water-line remains the same, viz. that the

centre of gravity and the centre of buoyancy must be in the

same vertical line, because G has shifted to G'. The ship

must therefore adjust herself till the centre of gravity and the

centre of buoyancy are in the same vertical line, when she

will float at a new water-line, W'L', the new centre of buoyancy

being B'. The original vertical through G and B meets the

new vertical through G' and B' in the point M, and this point

will be the longitudinal metacentre, supposing the change of

trim to be small, and GM will be the longitudinal metacentric

height. Draw W'C parallel to the original water-line WL,
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meeting the forward perpendicular in C. Then, since CL =
W'VV, the change of trim WW'-f LL'= CL' = x, say. The

angle of inclination of \\"\' to WL is the same as the angle

between W'L' and W'C =
0, say, and

CL' x
tan 6* =

, -r = r

length L
But we also have

GG'
tan = TTTjGM

therefore, equating these two values for tan 0, we have

x GG'
L
~
GM
w X d

~ W x GM
using the value obtained above for GG' ;

or

x, the change of trim due to the

moment of transference of the
w X d

WX GM
weight w through the distance d,

X L feet

12 X w X
ine change ot trim in inches = ----

,^

or

and the moment to change trim i inch is

W x GM .w X d = T foot-tons
12 X L

To determine this expression, we must know the vertical

position of the centre of gravity and the position of the longi-

tudinal metacentre. The vertical position of the centre of

gravity will be estimated in a design when dealing with the

metacentric height necessary, and the distance between

the centre of buoyancy and the centre of gravity is then sub-

tracted from the value of the longitudinal BM found by one of

the methods already explained. The distance BG is, however,

small compared with either of the distances BM or GM that

any small error in estimating the position of the centre of

gravity cannot appreciably affect the value of the moment to

change trim one inch. In many ships BM approximately
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equals the length of the ship, and therefore GM also
;
we may

therefore say that in such ships the moment to change trim

i inch = 1*2
the displacement in tons. For ships that are long

in proportion to the draught, the moment to change trim i inch

is greater than would be given by this approximate rule.

In the ship for which the value of the longitudinal BM was

calculated on p. 136, the centre of buoyancy was 2\ feet below

the L.W.L., the centre of gravity was estimated at i^ feet

below the L.W.L. ;
and the length between perpendiculars was

75 feet -

.'. GM = 69-9 i

= 68-9 feet

oi'6 x 68-9
and the moment to change trim i inch =

12 x 75
=

7 '01 foot-tons

the draughts being taken at the perpendiculars.

Example. A vessel 300 feet long and 2200 tons displacement has a

longitudinal metacentric height of 490 feet. Find the change of trim

caused by moving a weight of 5 tons already on board through a distance

of 200 feet from forward to aft.

Here the moment to change trim I inch is

2200 X 490 = 300 loot-tons nearly
12 X. 300

The moment aft due to the shift of the weight is

5 X 200 = 1000 foot-tons

and consequently the change of trim aft is

*-yjK~ 3s mcJics

Approximate Formula for t}ie Moment to change Trim i inch.

Assuming Normand's approximate formula for the height

of the longitudinal metacentre above the centre of buoyancy

given on p. 139
A2 x LH = 0-0735 B x V

we may construct an approximate formula for the moment to

change trim i inch as follows.

We have seen that the moment to change trim i inch is

Wx GM
12 X L

\
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V
We can write W = -- and assume that, for all practical pur-

35
\2 X L

poses, BM = GM =
0-0735^ y

Substituting this in the above formula, we have-

Moment to change i V Aa X L \

trim i inch /

~
35 x 12 x L X

V
'

0735B^TV /

A-
or 0*000175-:;,-

For further approximations, see Example 18, p. 157.

Applying this to the case worked out in detail on p. 136
-

Area of L.W.P. = A = 773'5 square feet

Breadth = B = 14*42 feet

so that the moment to change trim i inch approximately

should equal

foot-tons
14-42

the exact value, as calculated on p. 144, being 7*01 foot-tons.

It is generally sufficiently accurate to assume that one-half

the change of trim is forward, and the other half is aft. In the

example on p. 144, if the ship floated at a draught of 12' 3"

forward and 14' 9" aft, the new draught forward would be

12- 3"
-- if = 12' if

and the new draught aft would be

14' 9" + if = 14' rof"

Referring, however, to Fig. 64, it will be seen that when,
as is usually the case, the centre of flotation is not at the middle

of the length, WW is not equal to LL', so that, strictly speak-

ing, the total change of trim should not be divided by 2, and
one-half taken forward and the other half aft. Consider the

triangles FWW, FLL'; these triangles are similar to one

L
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another, and the corresponding sides are proportional, so

that

WW LL'

WF
==

LF
and both these triangles are similar to the triangle W'CL'.

Consequent!)
7

WW LL' CL' _ change of trim

WF
~
LF

~ WC
~

length

WF
' WW =

leligth
X change f tnm

T F
and LL' = . . x change of trim

that is to say, the proportion of the change of trim either aft or

forward, is the proportion the length of the vessel abaft or

forward of the centre of flotation bears to the length of the

vessel. Where the change of trim is small, this makes no

appreciable difference in the result, but there is a difference

when large changes of trim are under consideration.

For example, in the case worked out on p. 144, suppose
a weight of 50 tons is moved through 100 feet from forward to

aft
;
the change of trim caused would be

Mf=i6f inches

The centre of flotation was 1 2 feet abaft the middle of length.

The portion of the length abaft the centre of flotation is there-

fore ^|-f of the length. The increase of draught aft is there-

fore

iff X = 7f inches

and the decrease of draught forward is

lea v A o inches
3 * 3 7 U1<-"C!>

instead of 8 inches both forward and aft. The draught

forward is therefore

i 2
'

3
"-

9"= n'6"

and the draught aft

14' 9" + 7f"
=

15' 4f"

It will be noticed that the mean draught is not the same as
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before the shifting, but two-thirds of an inch less, while the

displacement remains the same. This is due to the fact that,

as the ship increases her draught aft and decreases it forward, a

fuller portion of the ship goes into the water and a finer portion

comes out.

Effect on the Trim of a Ship due to adding a

Weight of Moderate Amount. If we wish to place a

weight on board a ship so that the vessel will not change trim,

we must place it so that the upward force of the added buoyancy
will act in the same line as the downward force of the added

weight. Take a ship floating at a certain water-line, and

imagine her to sink down a small amount, so that the new

waterplane is parallel to the original water-plane. The added

buoyancy is formed of a layer of parallel thickness, and having

very nearly the shape of the original water-plane. The upward
force of this added buoyancy will act through the centre of

gravity of the layer, which will be very nearly vertically over

the centre of gravity of the original water-plane, or, as we have

termed it, the centre of flotation. AVe therefore see that to

place a weight of moderate amount on a ship so that no

change of trim takes place, we must place it vertically over or

under the centre of flotation. The ship will then sink to a new

water-line parallel to the original water-line, and the distance

she will sink is known at once, if we know the tons per inch

at the original water-line. Thus a ship is floating at a draught

of 13 feet forward and 15 feet aft, and the tons per inch immer-

sion is 20 tons. If a weight of 55 tons be placed over or under

the centre of flotation, she will sink ff inches, or 2^ inches,

and the new draught will be 13' 2-f" forward and 15' 2^" aft.

It will be noticed that we have made two assumptions, both

of which are rendered admissible by considering that the weight
is of moderate amount. First, that the tons per inch does not

change appreciably as the draught increases, and this is, for all

practical purposes, the case in ordinary ships. Second, that the

centre of gravity of the parallel layer of added buoyancy is in

the same section as the centre of flotation. This latter assump-
tion may be taken as true for small changes in draught caused

by the addition of weights of moderate amount
;
but for large
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changes it will not be reasonable, because the centres of gravity

of the water-planes are not all in 'the same section, but vary for

each water-plane. As a rule, water-planes are fuller aft than

forward near the L.W.P., and this more so as the draught
increases

;
and so, if \ve draw on the profile of the sheer drawing

a curve through the centres of gravity of water-planes parallel to

the L.W.P., we should obtain a curve which slopes somewhat

aft as the draught increases. We shall discuss further the

methods which have to be adopted when the weights added

are too large for the above assumptions to be accepted.

We see, therefore, that if we place a weight of moderate

amount on board a ship at any other place than over the centre

of flotation, she will not sink in the water to a water-line

parallel to the original water-line, but she will change trim as

well as sink bodily in the water. The change of trim will be

forward or aft according as the weight is placed forward or

aft of the centre of flotation.

In determining the new draught of water, we proceed in

two steps :

1. Imagine the weight placed over the centre of flotation.

2. Then imagine the weight shifted either forward or aft to

the assigned position. This shift will produce a certain moment
forward or aft, as the case may be, equal to the weight multiplied

by its longitudinal distance from the centre of flotation. This

moment divided by the moment to change trim i inch as cal-

culated for the original water-plane will give the change of trim.

The steps will be best illustrated by the following example :

A vessel is floating at a draught of 12' 3" forward and 14' 6" aft. The
tons per inch immersion is 20 ; length, 300 feet ; centre of flotation, 12 feet

abaft the middle of length ; moment to change trim i inch, 300 foot-tons.

A weight of 30 tons is placed 20 feet from the forward end of the ship.
What will be the new draught of water ?

The first step is to see the sinkage caused by placing the weight over

the centre of flotation. This sinkage is i inches, and the draughts would
then be

12' 4!" forward, 14' "]\" aft

Now, the shift from the centre of flotation to the given position is 142
feet, so that the moment forward is 30 X 142 foot-tons, and the change
of trim by the bow is

30 X 142
,
or 141 inches nearly
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This has to be divided up in the ratio of 138 : 162, because the centre
of notation is 12 feet abaft the middle of length. We therefore have

Increase of draught forward
jj
X 14^" = 7f say

Decrease of draught aft Jj$ X 14^" = 61" say

The final draughts will therefore be

Forward, 12' 4.]" -f- 7f = 13' 05"
Aft, 14' yi" 6i" = 14' i"

Effect on the Trim of a Ship due to adding a

Weight of Considerable Amount. In this case the

assumptions made in the previous investigation will no longer

hold, and we must allow for the following :

1. Variation of the tons per inch immersion as the ship

sinks deeper in the water.

2. The centre of flotation does not remain in the same

transverse section.

3. The addition of a large weight will alter the position

of G, the centre of gravity of the ship.

4. The different form of the volume of displacement will

alter the position of B, the centre of buoyancy of the ship, and

also the value of BM.

5. Items 3 and 4 will alter the value of the moment to

change trim i inch.

As regards i, we can obtain first an approximation to the

sinkage by dividing the added weight by the tons per inch

immersion at the original water-line. The curve of tons per
inch immersion will give the tons per inch at this new draught.
The mean between this latter value and the original tons per

inch, divided into the added weight, will give a very close

approximation to the increased draught. Thus, a vessel floats at

a constant draught of 22' 2", the tons per inch immersion

being 44' 5. It is required to find the draught after adding a

weight of 750 tons. The first approximation to the increase of

draught is - = 17 inches nearly. At a draught of 23' 7"
44'5

it is found that the tons per inch immersion is 45*7. The
mean tons per inch is therefore |(44'5 + 45'?) = 45% and

the increase in draught is therefore - = 16-63, or J 6f inches
45' 1
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nearly. This assumes that the ship sinks to a water-plane

parallel to the first water-plane. In order that this can be the

case, the weight must have been placed in the same transverse

section as the centre of gravity of the layer of displacement

between the two water-planes. We know that the weight and

buoyancy of the ship must act in the same vertical line, and

therefore, for the vessel to sink down without change of trim,

the added weight must act in the same vertical line as the

added buoyancy. We can approximate very closely to the

centre of gravity of the layer as follows : Find the centre of

flotation of the original W.P. and that of the parallel W.P.

to which the vessel is supposed to sink. Put these points on

the profile drawing at the respective water-lines. Draw a line

joining them, and bisect this line. Then this point will be

a very close approximation to the centre of gravity of the layer.

A weight of 750 tons placed as above, with its centre of gravity

in the transverse section containing this point, will cause the

ship to take up a new draught of 23' 6f
'

with no change of trim.

We can very readily find the new position of G, the centre

of gravity of the ship due to the addition of the weight. Thus,

suppose the weight of 750 tons in the above example is placed

with its centre of gravity 16 feet below the C.G. of the ship;

then, supposing the displacement before adding the weight to

be 9500 tons, we have

750 x 16
Lowering or G =

10250
= i 'i 7 feet

We also have to take account of 4. In the case we have

taken, the new C.B. below the original watei'-litit was 9*7 feet,

as against 10*5 feet in the original condition, or a rise of 0*8

foot.

For the new water-plane we have a different longitudinal

BM, and, knowing the new position of B and of G, we can deter-

mine the new longitudinal metacentric height. From this we
can obtain the new moment to change trim i inch, using, of

course, the new displacement. In the above case this works

out to 950 foot-tons.
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Now we must suppose that the weight is shifted from the

assumed position in the same vertical line as the centre of

gravity of the layer to its given position, and this distance must

be found. The weight multiplied by the longitudinal shift will

give the moment changing the trim either aft or forward, as the

case may be. Suppose, in the above case, this distance is 50 feet

forward. Then the moment changing trim by the bow is

750 x 50 = 37,500 foot-tons

and the approximate change of trim is

37>5 -r- 95 = 39* inches

This change of trim has to be divided up in the ordinary

way for the change of draught aft and forward. In this case

we have

Increase of draught forward = f^- X 39* = 21^ inches say

Decrease of draught aft = ^f X 39! = 18 inches say

We therefore have for our new draughts

Draught aft, 25' 2" + i6f"
- 18" =22' of"

Draught forward, 22' 2" + i6f" + 2ii" = 25' 4!"

For all ordinary purposes this would be sufficiently accu-

rate ; but it is evidently still an approximation, because we do

not take account of the new GM for the final water-line, and

the consequent new moment to change trim i inch. These can

be calculated if desired, and corrections made where necessary.

'. To determine the Position of a Weight on Board
a Ship such that the Draught aft shall remain
constant whether the Weight is or is not on Board.
Take a ship floating at the water-line WL, as in Fig. 65. If

a weight w be placed with its centre of gravity in the transverse

section that contains the centre of flotation, the vessel will very

nearly sink to a parallel water-line W'L'. 1

This, however, is

not what is required, because the draught aft is the distance

WW greater than it should be. The weight will have to be

1

Strictly speaking, the weight should be placed with its centre of

gravity in the transverse section that contains the centre of gravity of the

zone between the water-lines WL and W'L'.
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moved forward sufficient to cause a change of trim forward of

WW -j- LL', and then the draught aft will be the same as it

originally was, and the draught forward will increase by the

amount WW -f LL'. This will be more clearly seen, perhaps,

by working the following example :

It is desired that the draught of water aft in a steamship

(particulars given below) shall be constant, whether the coals

FIG. 65.

are in or out of the ship. Find the approximate position of

the centre of gravity of the coals in order that the desired

condition may be fulfilled : Length of ship, 205 feet; displace-

ment, 522 tons (no coals on board) ;
centre of flotation from

after perpendicular, 104*3 feet; longitudinal BM, 664 feet;

longitudinal GM, 661*5 feet; tons per inch, 11*4; weight of

coals, 57 tons.

From the particulars given, we find that

Moment to change ) 661-5 X 522
. , f

- =140 foot-tons
trim i inch 12 X 205

The bodily sinkage, supposing the coals placed with the centre

of gravity in the transverse section containing the centre of

flotation, will be =
5 inches. Therefore the coals must

1 1 '4

be shifted forward from this position through such a distance

that a change of trim of 10 inches forward is produced.

Accordingly, a forward moment of

140 X 10 = 1400 foot-tons

is required, and the distance forward of the centre of flotation

the coals require shifting is

= 24-6 feet
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Therefore, if the coals are placed

104*3 + 24'6 = i28'9 feet

forward of the after perpendicular, the draught aft will remain

very approximately the same as before.

Change of Trim caused by a Compartment being

open to the Sea. The principles involved in dealing with

a problem of this character will be best understood by working
out the following example :

A rectangular-shaped lighter, 100 feet long, 40 feet broad,

10 feet deep, floating in salt water at 3 feet level draught, has

a collision bulkhead 6 feet from the forward end. If the side

is broached before this bulkhead below water, what would be

the trim in the damaged condition ?

Let ABCD, Fig. 66, be the elevation of the lighter, with a

C.

FIG. 66.

collision bulkhead 6 feet from the forward end, and floating

at the level water-line WL. It is well to do this problem
in two stages

r. Determine the amount of mean sinkage due to the loss

of buoyancy.
2. Determine the change of trim caused.

i. The lighter, due to the damage, loses an amount of

buoyancy which is represented by the shaded part GB, and if

we assume that she sinks down parallel, she will settle down at

a water-line wl such that volume wG = volume GB. This

will determine the distance x between ze>/and WL.
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For the volume wG = wH X 40 feet X x

and the volume GB = GL X 40 feet X 3 feet

40 x 6 x 3 18 ,
.'.# = - = |f feet

94 X 40
= 2\ inches nearly

2. We now deal with the change of trim caused.

The volume of displacement = 100 x 40 x 3 cubic feet

The weight of the lighter
= ^-**>- X-3 = 1^2. tons

O 3

and this weight acts down through G, the centre of gravity,

which is at 50 feet from either end.

But we have lost the buoyancy due to the part forward of

bulkhead EF, and the centre of buoyancy has now shifted

back to B' such that the distance of B' from the after end is

47 feet. Therefore we have W, the weight of lighter, acting

down through G, and W, the upward force of buoyancy, acting

through B'. These form a couple of magnitude

W X 3 feet = ^/^ X 3 = ^^- foot-tons

tending to trim the ship forward.

To find the amount of this trim, we must find the moment
to change trim i inch

_ W x^GM
12 x L

using the ordinary notation.

Now, GM very nearly equals BM ;

2400
.". moment to change trim i inch = ? X BM

12 x 100

= f X BM

BM = -

where I
(1
= the moment of inertia of the intact water-plane about

a transverse axis through its centre of gravity ;

and V = volume of displacement in cubic feet.
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I = TV(94 x 40) X (94)-

V = 12,000

BM = 4 X-(94)
:!

144000
2 X 40 X (94)

:!

and moment to alter trim i inch = -

7 x 144000
= 66 foot-tons nearly

.'. the change of trim = H -r- 66

=
15-^ inches

The new water-line W'L' will pass through the centre

of gravity of the water-line wl at K, and the change of trim

aft and forward must be in the ratio 47 : 53 ;
or

Decrease of draught aft = ^ X 15$ = 7-5
inches

Increase of draught forward = f^r X 15^ = 8^ inches

therefore the new draught aft is given by

3' o" + 2? -
7i" = 2' 7"

and the new draught forward by

3' o" + 2\" 4- 8i" = 3' iol"

The same result would be -obtained by considering the

weight of water in the compartment GB acting downwards,
and taking its moment about the centre of flotation K of the

intact part of the water-line wl. This gives a moment forward

of

(-
-4-~-3

) X 50 foot-tons =^ foot-tons

as obtained above.

It will be noticed that we have assumed that the moment to

change trim for the water-plane wl remains constant as the

vessel changes trim. The slight alteration can be allowed for,

if thought desirable, by taking the mean between the moment
to change trim for the water-planes wl and W'L', and using
that to determine the change of trim.
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EXAMPLES TO CHAPTER IV.

1. A ship is floating at a draught of 20 feet forward and 22 feet aft, when
the following weights are placed on board in the positions named :

Weight Distance from C.G. of
in tons. water-plane in feet.

2O IOO ) , c

45 8oj
before

60 ... so ) , r,

3o 5oj
abaft

What will be the new draught forward and aft, the moment to change
trim I inch being 800 foot-tons, and the tons per inch = 35 ?

Ans. 20' 5f" forward, 22' 3" aft.

2. A vessel 300 feet long, designed to float with a trim of 3 feet by
the stern, owing to consumption of coal and stores, floats at a draught of

9' 3" forward, and 14' 3" aft. The load displacement at a mean draught of

13' 6" is 2140 tons
; tons per inch, i8J ; centre of flotation, 12.^ feet abaft the

middle of length. Approximate as closely as you can to the displacement.
Ans. 1775 tons.

3. A vessel is 300 feet long and 36 feet beam. Approximate to the

moment to change trim I inch, the coefficient of fineness of the L.W.P.
being 0*75.

Ans. 319 foot-tons.

4. A light-draught stern-wheel steamer is very approximately of the form
of a rectangular box of 120 feet length and 20 feet breadth. When fully

laden, the draught is 18 inches, and the centre of gravity of vessel and

lading is 8 feet above the water-line. Find the transverse and longitudinal
metacentric heights, and also the moment to change trim one inch.

Ans. 13*47 feet, 791 ^ feet ; 56.^ foot-tons.

5. A vessel is floating at a draught of 12' 3" forward and 14' 6" aft.

The tons per inch immersion is 20 ; length, 300 feet
; centre of flotation,

12 feet abaft amidships; moment to change trim I inch, 300 foot-tons.

Where should a weight of 60 tons be placed on this vessel to bring her to

an even keel.

Ans. 123 feet forward of amidships.
6. What weight placed 13 feet forward of amidships will have the same

effect on the trim of a vessel as a weight of 5 tons placed 10 feet abaft the

forward end, the length of the ship being 300 feet, and the centre of

flotation 12 feet abaft amidships.
Ans. 3O'4 tons.

7. A right circular pontoon 50 feet long and 16 feet in diameter is just

half immersed on an even keel. The centre of gravity is 4 feet above the

bottom. Calculate and state in degrees the transverse heel that would be

produced by shifting 10 tons 3 feet across the vessel. State, in inches, the

change of trim produced by shifting 10 tons longitudinally through 20 feet.

Ans. 3 degrees nearly ; 25 inches nearly.
8. Show why it is that many ships floating on an even keel will increase

the draught forward, and decrease the draught aft, or, as it is termed, go
down by the head, if a weight is placed at the middle of the length.

9. Show that for vessels having the ratio of the length to the draught
about 13, the longitudinal B.M. is approximately equal to the length.

Why should a shallow draught river steamer have a longitudinal B.M.
much greater than the length ? What type of vessel would have a longitu-
dinal B.M. less than the length ?
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10. Find the moment to change trim I inch of a vessel 400 feet long,

having given the following particulars : Longitudinal metacentre above

centre of buoyancy, 446 feet ; distance between centre of gravity and centre

of buoyancy, 14 feet ; displacement, 15,000 tons.

Ans. 1 350 foot-tons.

11. The moment of inertia of a water-plane of 22,500 square feet

about a transverse axis 20 feet forward of the centre of flotation, is found

to be 254,000,000 in foot-units. The displacement of the vessel being

14,000 tons, determine the distance between the centre of buoyancy and

the longitudinal metacentre.

Ans. 500 feet.

12. In the preceding question, if the length of the ship is 405 feet, and
the distance between the centre of buoyancy and the centre of gravity is 13

feet, determine the change of trim caused by the longitudinal transfer of

150 tons through 50 feet.

Ans. 5| inches nearly.

13. A water-plane has an area of 13,200 square feet, and its moment of

inertia about a transverse axis 14^ feet forward of its centre of gravity
works out to 84,539,575 in foot-units. The vessel is 350 feet long, and
has a displacement to the above water-line of 5600 tons. Determine the

moment to change trim I inch, the distance between the centre of gravity
and the centre of buoyancy being estimated at 8 feet.

Ans. 546 foot -tons.

14. The semi-ordinates of a water-plane of a ship 20 feet apart are as

follows: 0-4, 7-5, 14-5, 2i'o, 26-6, 30-9, 34-0, 36-0, 37-0, 37-3, 37-3,

37'3 37'3. 37'2, 37'i, 36 '8, 35 >8> 33'4, 28-8, 21 7, 11-5 feet respectively.
The after appendage, whole area 214 square feet, has its centre of gravity
6'2 feet abaft the last ordinate. Calculate

1 I )
Area of the water-plane.

(2) Position of C.G. of water-plane.

(3) Transverse B.M.
(4) Longitudinal B.M.

(Volume of displacement up to the water-plane 525,304 cubic feet.)

Ans. (i) 24,015 square feet; (2) i8'2 feet abaft middle ordinate;

(3) 17-16 feet ; (4) 447-6 feet.

15. The semi-ordinates of the L.W.P. of a vessel 15 \ feet apart are,

commencing from forward, o'l, 2'5, 5*3, 8'i, IO'8, 13-1, 15*0, 16-4, I7'6,

18-3, 18-5, 18-5, 18-4, 18-1, 17-5, 16-6, 15-3, 13-3, 10-8, 7-6, 3-8 feet

respectively. Abaft the last ordinate there is a portion of the water-plane,
the half-area being 27 square feet, having its centre of gravity 4 feet abaft

the last ordinate. Calculate the distance of the longitudinal metacentre
above the centre of buoyancy, the displacement being 2206 tons.

Ans. 534 feet.

16. State the conditions that must hold in order that a vessel shall not

change trim in passing from river water to salt water.

17. A log of fir, specific gravity 0-5, is 12 feet long, and the section is

2 feet square. What is its longitudinal metacentric height when floating in

stable equilibrium ?

Ans. 16*5 feet nearly.
1 8. Using the approximate formula for the moment to change trim i

inch given on p. 145, show that this moment will be very nearly given by
rpj

30 . -=-> where T is the tons per inch immersion, and B is the breadth.
B
Show also that in ships of ordinary form, the moment to change trim

I inch approximately equals j^ . L2B.



CHAPTER V.

STATICAL STABILITY, CURVES OF STABILITY, CALCU-
LATIONS FOR CURVES OF STABILITY, INTEGRATOR,
DYNAMICAL STABJLIl^Y.

Statical Stability at Large Angles of Inclination.

Atwood's Formula. We have up to the present only dealt

with the stability of a ship at small angles of inclination, and

within these limits we can determine what the statical stability is

by using the metacentric method as explained on p. 94. We
must now, however, investigate how the statical stability of a

ship can be determined for large angles of inclination, because

in service it is certain that she will be heeled over to much

larger angles than 10 to 15, which are the limits beyond which

we cannot employ the metacentric method.

Let Fig. 67 represent the cross-section of a ship inclined

to a large angle 0. WL is the position on the ship of the

original water-line, and B the original position of the centre of

buoyancy. In the inclined position she floats at the water-line

W'L', which intersectsWL in the point S, which for large angles

will not usually be in the middle line of the ship. The volume

SWW is termed, as before, the
"
emerged wedge" and the volume

SLL' the " immersed wedge" and g, g
1

are the positions of the

centres of gravity of the emerged and immersed wedges respec-

tively. The volume of displacement remains the same, and

consequently these wedges are equal in volume. Let this

volume be denoted by v. The centre of buoyancy of the

vessel when floating at the water-line W'L' is at B', and the

upward support of the buoyancy acts through B' ; the downward

force of the weight acts through G, the centre of gravity of the

ship. Draw GZ and BR perpendicular to the vertical through

B', and gh,g"H perpendicular to the new water-line W'L'. Then
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the moment of the couple tending to right the ship is W x GZ,

or, as we term it, the moment of statical stability. Now

GZ = BR - BP
= BR - BG sin

so that the moment of statical stability at the angle is

W(BR - BG . sin 6}

The length BR is the only term in this expression that we
do not know, and it is obtained in the following manner. The

new volume of displacement W'AL' is obtained from the old

volume WAL by shifting the volume WSW to the position

LSL', through a horizontal distance hK. Therefore the hori-

zontal shift of the centre of gravity of the immersed volume

from its original position at B, or BR, is given by

v x hK
BR =

V

(using the principle discussed on p. 96). Therefore the

moment of statical stability at the angle is

f 1! Y JtJl' \W f BG . sin B
J

foot-tons

This is known as " Atwood's formula."
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The righting arm or lever = ~ BG . sin 6

If we want to find the length of the righting arm or lever

at a given angle of heel 6, we must therefore know

(1) The position of the centre of buoyancy B in the up-

right condition.

(2) The position of the centre of gravity G of the ship.

(3) The volume of displacement V.

(4) The value of the moment of transference of the wedges

parallel to the new water-line, viz. z- x ////.

This last expression involves a considerable amount of cal-

culation, as the form of a ship is an irregular one. The methods

adopted will be fully explained later, but for the present we
will suppose that it can be obtained when the form of the ship

is given.

Curve of Statical Stability. The lengths of GZ thus

obtained from Atwood's formula will vary as the angle of

heel increases, and usually GZ gradually increases until an

angle is reached when it obtains a maximum value. On
further inclination, an angle will be reached when GZ becomes

zero, and, further than this, GZ becomes negative when the

couple W X GZ is no longer a couple tending to right the

ship, but is an upsetting couple tending to incline the ship still

further. Take H.M.S. Captain
1

as an example. The lengths

of the lever GZ, as calculated for this ship, were as follows :

At 7 degrees, GZ= 4-^ inches

T A Hi-
ll

A 4 11 11 2 11

11
21

,, ,,
= -*4 )J

11
28 = 10

11 o5 >' 11 if 11

11 42 j> 11

11 49 11 11

11 54i i, 11
= '"'/

Now set along a base-line a scale of degrees on a con-

1 The Captain was a rigged turret-ship which foundered in the Bay of

Biscay. A discussion of her stability will be found in "Naval Science,"
vol. i.
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venient scale (say \ inch = i degree), and erect ordinates

at the above angles of the respective lengths given. If now

we pass a curve through the tops of these ordinates, we shall

obtain what is termed a " curve of statical stability" from

which we can obtain the length of GZ for any angle by drawing

the ordinate to the curve at that angle. The curve A, in Fig.

68, is the curve so constructed for the Captain. The angle

14. 21. 28 35. 42. 49. 545.

-ANCLES OF INCLINATION.-

FIG. 68.

at which GZ obtains its maximum value is termed the "
angle of

maximum stability" and the angle at which the curve crosses

the base-line is termed the "
angle of vanishing stability" and

the number of degrees at which this occurs is termed the
"
range of stability? If a ship is forced over beyond the angle

of vanishing stability, she cannot right herself; GZ having a

negative value, the couple operating on the ship is an up-

setting couple.

In striking contrast to the curve of stability of the Captain
is the curve as constructed for H.M.S. Monarch?- The lengths
of the righting levers at different angles were calculated as

follows :

At 7 degrees, GZ = 4 inches

>J *4 55
= "4 5J

t T T 1 *

J)
* L '~ 1 *4 5>

*> 5i T Q 1
)>

ZO
55 5>

: IO
4~

1C 1 T.2.OD J
' * 1 4 J>

1 The Monarch was a rigged ship built about the same time as the

Captain, but differing from the Captain in having greater freeboard. See
also the volume of "Naval Science " above referred to.

M
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At 42 degrees, GZ = 22 inches

49 = 20
" ~

The curve for this ship, using the above values for GZ, is

given by B, Fig. 68. The righting lever goes on lengthening
in the Monarch's case up to the large angle of 40, and then
shortens but slowly ; that of the Captain begins to shorten at

about 21 of inclination, and disappears altogether at 54^, an

angle at which the Monarch still possesses a large righting lever.

Referring to Atwood's formula for the lever of statical

stability at the angle 9, viz.

v X hh'
GZ = =--- BG . sin 6

\

we see that the expression consists of two parts. The
first part is purely geometrical, depending solely upon the

form of the ship ;
the second part, BG . sin 6, brings in the

influence of the position of the centre of gravity of the ship,

and this depends on the distribution of the weights forming
the structure and lading of the ship. We shall deal with these

two parts separately.

(1) Influence ofform on curves of stability.

(2) Influence of position of centre of gravity on curves of

stability.

(i) We have here to take account of the form of the ship

above water, as well as the form of the ship below water. The
three elements of form we shall consider are draught, beam,
and freeboard. These are, of course, relative

;
for con-

venience we shall keep the draught constant, and see what

variation is caused by altering the beam and freeboard. For

the sake of simplicity, let us take floating bodies in the form

of boxes.1 The position of the centre of gravity is taken as

constant. Take the standard form to be a box :

Draught ............... 21 feet.

Beam ............... 50^ ,.

Freeboard ... ... ...... ... 6J ,,

1 These illustrations are taken from a paper read at the Institution of

Naval Architects by Sir N. Barnaby in 1871.
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The curve of statical stability is shown in Fig. 69 by the

curve A. The deck-edge becomes immersed at an inclination

of 14^, and from this angle the curve increases less rapidly

than before, and, having reached a maximum value, decreases,

the angle of vanishing stability being reached at about 38.
Now consider the effect of adding 4^- feet to the beam,

thus making the box

Draught 21 feet.

Beam ... ... ... ... ... 55 ,,

Freeboard ... ... ... ... ... 6

The curve is now given by B, Fig. 69, the angle of vanish-

ing stability being increased to about 45. Although the

10. 20. 30. 40. 50. 60. 70.

ANGLE OF INCLINATION.

FIG. 69.

position of the centre of gravity has remained unaltered, the

increase of beam has caused an increase of GM, the meta-

centric height, because the transverse metacentre has gone up.

We know that for small angles the lever of statical stability is

given by GM . sin 0, and consequently we should expect the

curve B to start as shown, steeper than the curve A, because

GM is greater. There is a very important connection between

the metacentric height and the slope of the curve of statical

stability at the start, to which we shall refer hereafter.

Now consider the effect of adding 4^ feet to the freeboard

of the original form, thus making the dimensions

Draught 21 feet.

Beam 50^ ,,

Freeboard .. II
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The curve is now given by C, Fig. 69, which is in striking
contrast to both A and B. The angle of vanishing stability
is now 72. The curves A and C coincide up to the angle at

which the deck-edge of A is immersed, viz. 14-^, and then,

owing to the freeboard still being maintained, the curve C
leaves the curve A, and does not commence to decrease

until 40.
These curves are very instructive in showing the influence

of beam and freeboard on stability at large angles. We see

(a) An increase of beam increases the initial stability, and

therefore the slope of the curve near the origin, but does not

greatly influence the area enclosed by the curve or the range.

(b) An increase of freeboard has no effect on initial

stability (supposing the increase of freeboard does not affect

the centre of gravity), but has a most important effect in

lengthening out the curve and increasing its area. The two

bodies whose curves of statical stability are given by A and C
have the same GM, but the curves of statical stability are very

different.

(2) We now have to consider the effect on the curve of

statical stability of the position of the centre of gravity. If

the centre of gravity G is above the centre of buoyancy B, as is

usually the case, the righting lever is less than ^ by the

expression BG . sin 0. Thus the deduction becomes greater as

the angle of inclination increases, because sin increases as 6

increases, reaching a maximum value of sin = i when 6 =
90; the deduction also increases as the C.G. rises in the

ship. Thus, suppose, in the case C above, the centre of gravity

is raised 2 feet. Then the ordinate of the curve C at any

angle is diminished by 2 x sin 0. For 30, sin =
-|,

and

the deduction is there i foot. In this way we get the curve D,
in which the range of stability is reduced from 72 to 53 owing
to the 2-feet rise of the centre of gravity.

It is usual to construct these curves as indicated, the

ordinates being righting levers, and not righting moments. The

righting moment at any angle can be at once obtained by

multiplying the lever by the constant displacement. The real
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curve of statical stability is of course a curve, the ordinates of

which represent righting moments. This should not be lost

sight of, as the following will show. In Fig. 70 are given the

73.

curves of righting levers for a merchant vessel in two given

conditions, A for the light condition at a displacement of

1500 tons, and B for the load condition at a displacement of

3500 tons. Looking simply at these curves, it would be

thought that the ship in the light condition had the better

stability; but in Fig. 71, in which A represents the curve of

75.

righting moments in the light condition, and curve B the curve

of righting moments in the load condition, we see that the

ship in the light condition has very much less stability than in

the load condition.

We see that the following are the important features of a

curve of statical stability :

(a) Inclination the tangent to the curve at the origin has to

the base-line
;

(b) The angle at which the maximum value occurs, and the

length of the righting lever at this angle ;

(c) The range of stability.
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The angle the tangent at the origin makes with the base-

line can be found in a very simple manner as follows : At the

angle whose circular measure

is unity, viz. 57*3, erect a

perpendicular to the base,

and make its length equal to

the metacentric height GM,
for the condition at which

s.

r

the curve has to be drawn,

a
. r, using the same scale as for

j*~ : I the righting levers (see Fig.

72). Join the end of this
FIG. 72.

' ' : , . . , ,

line with the origin, and the

curve as it approaches the origin will tend to lie along this

curve.

The proof of this is given below.
1

Specimen Curves of Stability. In Fig. 73 are given

some specimen curves of stability for typical classes of ships.

A is the curve for a modern British battleship of about 3^
feet metacentric height. The range is about 63.

B is the curve for the American monitor Miantonomoh.

This ship had a low freeboard, and to provide sufficient stability

a very great metacentric height was provided. This is shown

by the steepness of the curve at the start.

C is the curve for a merchant steamer carrying a miscel-

laneous cargo, with a metacentric height of about 2 feet. In

1 For a small angle of inclination 0, we know that GZ = GM x 0,

B being in circular measure ;

GZ GM
or - =

I

If now we express in degrees, say =
<f>, then

GZ_ GM
<p angle whose circular measure is I

GZ _ GM

If a is the angle OM makes with the base, then

_ GM _ GZ

and thus the line OM lies along the curve near the origin.
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this ship there is a large righting lever even at 90. It must

be stated that, although this curve is typical for many ships, yet

the forms of the curves of stability for merchant steamers must

vary considerably, owing to the many different types of ships

and the variation in loading. The curves for a number of

10. 20. 30. 40. SO. 60. 70. 80. 90.
I

- ANGLES OF INCLINATION.

FIG. 73.

merchant steamers are given in the " Manual of Naval Archi-

tecture," by Sir W. H. AVhite, and the work on "
Stability," by

Sir E. J. Reed.

D is the curve of stability for a sailing-ship having a meta-

centric height of 3-5 feet. For further examples see the works

referred to above.

Fig. 74 gives an interesting curve of stability for a vessel

i- 3 FT.

-2. FT.

-I. FT.

30. "0 50.

FIG. 74.

70 80

which is unstable in the upright condition, but stable at a

moderate angle of heel. This vessel has a negative meta-

centric height, and would not remain in the upright position,

but on heeling to an angle of 25 she will resist further inclina-

tion, and consequently, if left to herself, the vessel will loll over
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to this angle, and there be perfectly stable. Such a condition

is quite likely to occur in a steamship which starts on a voyage
with a small metacentric height, loaded with a homogeneous

cargo. Towards the end of the voyage the coal is nearly all

burnt out abreast the boilers, and this weight, low down in the

ship, being removed, causes the C.G. of the ship to rise, and

thus possibly be above the transverse metacentre. The ship

is then unstable in the upright condition, but would incline

over to the angle at which the curve of stability crosses the

base-line.

The curve of stability for a floating body of circular form is

very readily obtainable, because

the section is such that the

upward force of the buoyancy

always acts through the centre

of the section, as shown in Fig.

75. The righting lever at any

angle 6 is GM . sin 0, where G
is the centre of gravity, and

M the centre of the section.

Taking the GM as two feet,

then the ordinates of the curve

of stability are o, i'o, 1*73, 2'o,

i'73, i'o, o at intervals of 30.
The maximum occurs at 90, and the range is 180. The

curve is shown in Fig. 76.

r 2FT-

-I FT-

30. 60. 90. 120.

DEGREES.

FIG. 76.

ISO.

Calculations for Curves of Stability. We now pro-

ceed to investigate methods that are or have been adopted in

practice to determine for any given ship the curve of righting

levers. The use of the integrator is now very general for
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doing this, and it saves an enormous amount of work \ but, in

order to get a proper grasp of the subject, it is advisable to

understand the methods that were in use previous to the intro-

duction of the integrator.

In constructing and using curves of stability, certain assump-
tions have to be made. These may be stated as follows :

1. The sides and deck are assumed' to be water-tight for the

range over which the curve is drawn.

2. The C.G. is taken in the same position in the ship, and

consequently we assume that no weights shift their position

throughout the inclination.

3. The trim is assumed to be unchanged, that is, the ship

is supposed to be constrained to move about a horizontal longi-

tudinal axis fixed in direction only, and to adjust herself to the

required displacement without change of trim.

It is not possible in this work to deal with all the systems
of calculation that have been employed ;

a selection only will

be given in this chapter. For further information the student

is referred to the Transactions of tJie Institution of Naval

Architects, and to the work by Sir E. J. Reed on the
"
Stability of Ships." The following are the methods that will

be discussed :

1. Blom's mechanical method.

2. Barnes' method.

3. Direct method (sometimes employed as a check on

other methods).

v 4. By Amsler's Integrator and Cross-curves of stability.

i. Blom's Mechanical Method. Take a sheet of

drawing-paper, and prick off from the body-plan the shape of

each equidistant section J

(i.e. the ordinary sections for displace-

ment), and cut these sections out up to the water-line at which

the curve of stability is required, marking on each section the

middle line. Now secure all these sections together in their

proper relative positions by the smallest possible use of gum.

1 In settling the sections to be used for calculating stability by any of the

methods, regard must be had to the existence of a poop or forecastle the

ends of which are watertight, and the ends of these should as nearly as

possible be made stop points in the Simpson's rule.
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The weight of these represents the displacement of the ship.

Next cut out sections of the ship for the angle at which the

stability is required, taking care to cut them rather above

the real water-line, and gum together in a similar manner to

the first set. Then balance these sections against the first

set, and cut the sections down parallel to the inclined water-

line until the weight equals that of the first set. When this

is the case, we can say that at the inclined water-line the

displacement is the same as at the original water-line in the up-

right condition. This must, of course, be the case as the vessel

heels over. On reference to Fig. 67, it will be seen that what

we want to find is the line through the centre of buoyancy for

the inclined position, perpendicular to the inclined water-line,

so that if we can find B' for the inclined position, we can com-

pletely determine the stability. This is done graphically by

finding the centre of gravity of the sections we have gummed
together, and the point thus found will give us the position of

the centre of buoyancy for the inclined condition. This is

done by successively suspending the sections and noting where

the plumb-lines cross, as explained on p. 49. Having then

the centre of buoyancy, we can draw through it a line perpen-

dicular to the inclined water-line, and if we then spot off the

position of the centre of gravity, we can at once measure off

the righting lever GZ. A similar set of sections must be made
for each angle about 10 apart, and thus the curve of stability

can be constructed.

2. Barnes's Method of calculating Statical

Stability. In this method a series of tables are employed,
called Preliminary and Combination Tables, in which the work

is set out in tabulated form. Take the section in Fig. 77 to

represent the ship, WL being the upright water-line for the con-

dition at which the curve of stability is required. Now, for a

small transverse angle of inclination it is true that the new water-

plane for the same displacement will pass through the centre

line of the original water-plane WL, but as the angle of inclina-

tion increases, a plane drawn through S will cut off a volume of

displacement sometimes greater and sometimes less than the

original volume, and the actual water-line will take up some
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such position as W'L', Fig. 77, supposing too great a volume to

be cut off by the plane through S. Now, we cannot say

straight off where the water-line W'L' will come. What we

have to do is this : Assume a water-line wl passing through

S ; find the volume of the assumed immersed wedge /SL, the

volume of the assumed emerged wedge wSW, and the area of

the assumed water-plane wl. Then the difference of the

volumes of the wedges divided by the area of the water-plane

will give the thickness of the layer between wl and the correct

water-plane, supposing the difference of the volumes is not too

great. If this is the case, the area of the new water-plane is

FIG. 77.

found, and a mean taken between it and the original. In

this way the thickness of the layer can be correctly found.

If the immersed wedge is in excess, the layer has to be de-

ducted
;

if .the emerged wedge is in excess, the layer has to be

added.

To get the volumes of either of the wedges, we have to

proceed as follows : Take radial planes a convenient angular
interval apart, and perform for each plane the operation sym-
bolized by -fc/y

2

. dx, />. the half-squares of the ordinates

are put through Simpson's rule in a fore-and-aft direction for

each of the planes. Then put the results through Simpson's

rule, using the circular measure of the angular interval. The
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result will be the volume of the wedge at the particular angle.

For proof of this see below. 1

The results being obtained for the immersed and emerged

wedges, we can now determine the thickness of the layer. This

work is arranged as follows : The preliminary table, one table

for each angle, consists of two parts, one for the immersed

wedge, one for the emerged wedge. A specimen table is given
on p. 174 for 30. The lengths of the ordinates of each radial

plane are set down in the ordinary way, and operated on by

Simpson's multipliers, giving us a function of the area on the

immersed side of 550'!, and on the emerged side of 477*4.

We then put down the squares of the ordinates, and put them

through the Simpson's multipliers, giving us a result for the

immersed side of 17,888, and for the emerged side 14,250.

The remainder of the work on the preliminary table will be

described later.

We now proceed to the combination table for 30 (see

p. 175), there being one table for each angle. The functions

of squares of ordinates are put down opposite their respective

angles, both for the immersed wedge and the emerged wedge,

up to and including 30, and these are put through Simpson's

multipliers. In this case the immersed wedge is in excess, and

so we find the volume of the layer to be taken off to be 7836
cubic feet, obtaining this by using the proper multipliers. At

the bottom is placed the work necessary for finding the thickness

of the layer. We have the area of the whole plane 20,540

square feet, and this divided into the excess volume of the

immersed wedge, 7836 cubic feet, gives the thickness of the

layer to take off, viz. 0*382 foot, to get the true water-line.

We now have to find the moment of transference of the

1 The area of the section S/L is given by J y* . dO, as on p. 15, and the

volume of the wedge is found by integrating these areas right fore and

aft, or

\$ly*.d.d*
which can be written

J/J>. </*.<#

or
J ( Jjj/

8
. dx)d6

i.e. Jjy
2

. dx is found for each radial plane, and integrated with respect to

the angular interval.
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wedges, v x hJ in Atwood's formula, and this is done by using
the assumed wedges and finding their moments about the line ST,
and then making at the end the correction rendered necessary

by the layer. To find these moments we proceed as follows :

In the preliminary table are placed the cubes of the ordinates of

the radial plane, and these are put through Simpson's rule
;
the

addition for the emerged and immersed sides are added

together, giving us for the 30 radial plane 1,053,633. These

sums of functions of cubes are put in the combination table for

each radial plane up to and including 30, and they are put

through Simpson's rule, and then respectively multiplied by
the cosine of the angle made by each radial plane with the

extreme radial plane at 30. The sum of these products gives

us a function of the sum of ttie moments of the assumed im-

mersed and emerged wedges about ST. The multiplier for the

particular case given is o^SyS, so that the uncorrected moment
of the wedges is 3,39i,662,

1
in foot-units, i.e. cubic feet, multi-

plied by feet.

1 The proof of the process is as follows : Take a section of the wedge
S/L, Fig. 78, and draw ST perpendicular to S/. Then what is required is

the moment of the section about ST, and this

integrated throughout the length. Take P and
P' on the curved boundary, very close together,
and join SP, SP' ; call the angle P'Sl, 0, and
the angle PSP', d9. s p-i^S |__l.

Then the area PSP' = |y* . do SP = y

The centre of gravity of SPP' is distant

from ST, \y . cos 0, and the moment of SPP'
about ST is

(fop . dO) X ($y . cos 6)

or }>
3

. cos 6 . dO

We therefore have the moment of /SL about ST

\ (jj/

3
. cos . d0

and therefore the moment of the wedge about ST is

/(J/.J'
3

. cos . d6)dx

'. cos . dx. d0

i.e. find the value of jjj
3

. cos . dx for radial planes up to and including
the angle, and then integrate with respect to the angular interval. It will

be seen that the process described above corresponds with this formula.
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WATER SECTION INCLINED AT 30.



COMBINATION TABLE FOR STABILITY.

CALCULATION FOR GZ AT 30.

IMMERSED WEDGE.
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We now have to make the correction for the layer. We
already have the volume of the layer, and whether it has to be

added or subtracted, and we can readily find the position of

the centre of gravity of the radial plane. This is done at the

bottom of the combination table from information obtained on

the preliminary table. We assume that the centre of gravity

of the layer is the same distance from ST as the centre of

gravity of the radial plane, which may be taken as the case,

unless the thickness of the layer is too great. If the layer

is thick, a new water-line is put in at thickness found, and the

area and C.G. of this water-line found. The mean between

the result of this and of the original plane can then be used.

The volume of the layer, 7836 cubic feet, is multiplied by the

distance of its centre of gravity from ST, viz. 1*723 feet, giving

a result of 13,502 in foot-units, i.e. cubic feet multiplied by
feet. The correction for the layer is added to or subtracted

from the uncorrected moment in accordance with the following

rules :

If the immersed wedge is in excess, and the centre of gravity

of the layer is on the immersed side, the correction for the layer

has to be subtracted.

If the immersed wedge is in excess, and the centre of gravity

of the layer is on the emerged side, the correction for the layer

has to be added.

If the emerged wedge is in excess, and the centre of gravity

of the layer is on the emerged side, the correction for the layer

has to be subtracted.

If the emerged wedge is in excess, and the centre of gravity

of the layer is on the immersed side, the correction for the layer

has to be added.

We, in this case, subtract the correction for the layer,

obtaining the true moment of transference of the wedges as

3,378,160, or v X hH in Atwood's formula. The volume of

displacement is 398,090 cubic feet; EG is irgo feet; sin 30
= o'5- So we can fill in all the items in Atwood's formula

or GZ = 2-535 feet
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In arranging the radial planes, it is best to arrange that the

deck edge comes at a stop point in Simpson's first rule, because
there is a sudden change of ordinate as the deck edge is passed,
and for the same reason additional intermediate radial planes
are introduced near the deck edge. In the case we have been

considering, the deck edge came at about 30. The radial

planes that were used were accordingly at

o, 10, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90

Barnes's method of calculating stability has been very largely

employed. It was introduced by Mr. F. K. Barnes at the Insti-

tution of Naval Architects in 1861, and in 1871 a paper was

read at the Institution by Sir W. H. White and the late Mr.

John, giving an account of the extensions of the system, with

specimen calculations. For further information the student is

referred to these papers, and also to the work on "
Stability,"

by Sir E. J. Reed. At the present time it is not used to any

large extent, owing to the introduction of the integrator,

which gives the results by a mechanical process in much less

time. It will be seen that in using this method to find the

stability at a given angle, we have to use all the angles up to

and including that angle at which the stability is required.

Thus a mistake made in the table at any of the smaller angles

is repeated right through, and affects the accuracy of the

calculation at the larger angles. In order to obtain an inde-

pendent check at any required angle, we can proceed as

follows :

3. Triangular or Direct Method of calculating

Stability. Take the body-plan, and draw on the trial plane

through the centre of the upright water-line at the required

angle. This may or may not cut off the required displace-

ment. We then, by the ordinary rules of mensuration, dis-

cussed in Chapter I., find the area of all such portions as S/L,

Fig. 77, for all the sections,
1 and also the position of the centre

of gravity, g, for each section, thus obtaining the distance S//.

1 The sections are made into simple figures, as triangles and trapeziums,
in order to obtain the area and position of C.G. of each.

N
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This is done for both the immersed and emerged wedges. The

work can then be arranged in tabular form thus :

Number of
section.
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(2) A function of the moment of tJie area about the axis

the bar is set to.

(3) A function of the moment of inertia of tlie area about

the same axis.

The bar is set parallel to the axis about which moments
are required, by means of distance pieces.

(1) is given by the reading indicated by the wheel marked A.

(2) is given by the reading indicated by the wheel marked M.

(3) is given by the reading indicated by the wheel marked I.

The finding of the moment of inertia is not required in our

present calculation.

Now let M'LMW represent the body-plan
1 of a vessel

inclined to an angle of 30 ; then, as the instrument is set, the

INTEGRATOR.

FIG. 79.

axis of moments is the line through S perpendicular to the

inclined water-line, and is what we have termed ST. What
we want to find is a line through the centre of buoyancy in the

inclined position perpendicular to the inclined water-line. By
passing the pointer of the instrument round a section, as

W'L'M, we can determine its area, and also its moment about

the axis ST by using the multipliers ;
and doing this for all the

sections in the body, we can determine the displacement and

also the moment of the displacement about ST.2
Dividing the

1 The body-plan is drawn for both sides of the ship the fore-body in

black say, and the after-body in red.
9 This is the simplest method, and it is the best for beginners to employ ; but

certain modifications suggest themselves after experience with the instrument.
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moment by the displacement, we obtain at once the distance

of the centre of buoyancy in the inclined condition from the

axis ST. It is convenient in practice to arrange the work in

a similar manner to that described for the planimeter, p. 79,

and the following specimen calculation for an angle of 30 will

illustrate the method employed. Every instrument has multi-

pliers for converting the readings of the wheel A into areas,

and those of the wheel M into moments. The multipliers

must also take account of the scale used.

30

AREAS
i
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and for the moment in foot-tons is

r x 64 x (\ X 875) x ^ = 0-2133'

We therefore have, assuming that the centre of gravity is at S

GZ= ,
981

i -46 feet
672-6

Now, this 672-6 tons is not the displacement up to the

original water-line WL, and we now have to consider a new

conception, viz. cross-curves of stability. These are the con-

verse of the ordinary curves of stability we have been consider-

ing. In these we have the righting levers at a constant

displacement and varying angles. In a cross-curve we have

the righting levers for a constant angle, but varying displace-

ment. Thus in Fig. 79, draw a water-line W"L" parallel to- CROSS CURVES OF STABILITY.-
C.G.m L.W-L.

3000. 4OOO.

DISPLACEMENT.

FIG. 80.

W'L', and for the volume represented by W"ML" find the

displacement and position of the centre of buoyancy in exactly

the same way as we have found it for the volume WML'.
The distance which this centre of buoyancy is from the axis

gives us the value of GZ at this displacement, supposing the

centre of gravity is at S. The same process is gone through
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for one or two more water-lines, and we shall have values of

GZ at varying displacements at a constant angle. These can

be set off as ordinates of a curve, the abscissae being the

displacements in tons. Such a curve is termed the "
cross-

curve of stability
"

at 30, and for any intermediate displace-

ment we can find the value of GZ at 30 by drawing the

ordinate to the curve at this displacement. A similar process

is gone through for each angle, the same position for the centre

of gravity being assumed all through, and a series of cross-

curves obtained. Such a set of cross-curves is shown in

Fig. 80 for displacements between 3000 and 5000 tons at

angles of 15, 30, 45, 60, 75, and 90. At any intermediate

displacement, say at 4600 tons, we can draw the ordinate and

measure off the values of GZ, and so obtain the ordinates

necessary to construct the ordinary curve of stability at that

displacement and assumed position of the centre of gravity.

The relation between the cross-curves and the ordinary curves

of stability is clearly shown in Fig. 81. We have four curves

IS. 30. 45. 60. 75.

DEGREES OF INCLINATION.

FIG. 81.

of stability for a vessel at displacements of 1500, 2000, 2500,

and 3000 tons. These are placed as shown in perspective.

Now, through the tops of the ordinates at any given angle we

can draw a curve, and this will be the cross-curve of stability

at that angle.

It will have been noticed that throughout our calculation
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we have assumed that the centre of gravity is always at the

point S, and the position of this point should be clearly stated

on the cross-curves. It is evident that the centre of gravity

cannot always remain in this position, which has only been

assumed for convenience. The correction necessary can

readily be made as follows : If G, the centre of gravity, is

below the assumed position S, then GZ = SZ + SG . sin 0, and

if G is above S, then GZ = SZ SG . sin for any angle 0.

Thus the ordinates are measured from the cross-curves at the

required displacement, and then, SG being known, SG sin 15,
SG sin 30, etc., can be found, and the correct values of GZ
determined for every angle.

Dynamical Stability. The amount of work done by
a force acting through a given distance is measured by the

product of the force and the distance through which it acts.

Thus, a horse exerting a pull of 30,000 Ibs. for a mile does

30,000 X 1760 X 3 = 158,400,000 foot-lbs. of work

Similarly, if a weight is lifted, the work done is the product of

the weight and the distance it is lifted. In the case of a

ship being inclined, work has to be done on the ship by some

external forces, and it is not always possible to measure the

work done by reference to these forces, but we can do so by
reference to the ship herself. When the ship is at rest, we

have seen that the vertical forces that act upon the ship are

(i) The weight of the ship acting vertically downwards

through the centre of gravity ;

"

(2) The buoyancy acting vertically upwards through the

centre of buoyancy ;

these two forces being equal in magnitude. When the ship is

inclined, they act throughout the whole of the inclination.

The centre of gravity is raised, and the centre of buoyancy is

lowered. The weight of the ship has been made to move

upwards the distance the centre of gravity has been raised, and

the force of the buoyancy has been made to move downwards

the distance the centre of buoyancy has been lowered. The

work done on the ship is equal to the weight multiplied by the

rise of the centre of gravity added to the force of the buoyancy

multiplied by the depression of the centre of buoyancy ;
or
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Work done on the ship = weight of the ship multiplied by the-

vertical separation of the centre of gravity and the centre;

of buoyancy.

This calculated for any given angle of inclination is termed
"
the dynamical stability

"
at that angle, and is the work that

has to be expended on the ship in heeling her over to the

given angle.

Moseley's Formula for the Dynamical Stability

at any Given Angle of Inclination. Let Fig. 67, p. 159,

represent a vessel heeled over by some external force to the

angle 6; g, g' being the centres of gravity of the emerged
and immersed wedges ; gh, g'h' being drawn perpendicular to

the new water-line W'Lr

. The other points in the figure have

their usual meaning, BR and GZ being drawn perpendicular

to the vertical through B'.

The vertical distance between the centres of gravity and

buoyancy when inclined at the angle is B'Z.

The original vertical distance when the vessel is upright

is BG.

Therefore the vertical separation is

B'Z - BG

and according to the definition above

Dynamical stability
= W(B'Z - BG)

where W = the weight of the ship in tons.

Now, B'Z = B'R + RZ = B'R + BG . cos

Now, using v for the volumes of either the immersed wedge
or the emerged wedge, and V for the volume of displacement
of the ship, and using the principle given on p. 96, we have

v X (gh -4- g'ti)
= V x B'R

vx(gh+g'h')or r> is. = ==.

Substituting the above value for BZ, we have
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'

^ dynamical , = wr^Jg* +/*) _ ^ -.

stability I L V 'J

which is known as Moseletfsformula.
It will be seen that this formula is very similar to Atwood's

formula (p. 159), and it is possible to calculate it out for varying

angles by using the tables in Barnes's method of calculating

stability. It is possible, however, to find the dynamical

stability of a ship at any angle much more readily if the

curve of statical stability has been constructed, and the

method adopted, if the dynamical stability is required, is as

follows :

The dynamical stability of a ship at any given angle
is equal to the area of the curve of statical

stability up to that angle (the ordinates of this curve

being the actual righting moments).

As the demonstration of this is somewhat difficult, it is

given in Appendix A, p. 247.

To illustrate this principle, take the case of a floating body
whose section is in the form of a circle, and which floats with

its centre in the surface of the water. The transverse meta-

centre of this body must be at the centre of the circular section.

Let the centre of gravity of the vessel be at G, and the centre

of buoyancy be at B. Then for an inclination through 90
G will rise till it is in the surface of the water, but the centre of

buoyancy will always remain at the same level, so that the

dynamical stability at 90 = W X GM.
Now take the curve of statical stability for such a vessel.

The ordinate of this curve at any angle 6 = W x GM . sin 0,

and consequently the ordinates at angles 15 apart will be

W.GM.sin o, W. GM.sin 15, and so on; or, o, 0-258

W.GM, 0-5 W.GM, 0707 W.GM, 0866 W.GM, 0-965
W . GM, and W . GM. If this curve is set out, and its area

calculated, it will be found that its area is W X GM, which is

the same as the dynamical stability up to 90, as found above.

It should be noticed that the angular interval should not be

taken as degrees, but should be measured in circular measure

(see p. 86). The circular measure of 15 is 0*2618.
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The dynamical stability at any angle depends, therefore,

on the area of the curve of statical stability up to that angle ;

and thus we see that the area of the curve of stability is of

importance as well as the angle at which the ship becomes un-

stable, because it is the dynamical stability that tells us the

work that has to be expended to force the ship over. For full

information on this subject, the student is referred to the
" Manual of Naval Architecture," by Sir W. H. White, and Sir

E. J. Reed's work on the "
Stability of Ships."

EXAMPLES TO CHAPTER V.

1. A two-masted cruiser of 5000 tons displacement has its centre of

gravity at two feet above the water-line. It is decided to add a military

top to each mast. Assuming the weight of each military top with its guns,

men, and ready-ammunition supply to be 12 tons, with its centre of gravity

70 feet above the water-line, what will be the effect of this change on

1 I ) The metacentric height of the vessel ?

(2) The maximum range of stability, assuming the present maximum
range is 90, and the tangent to the curve at this point inclined

at 45 to the base-line ?

(Scale used, \ inch = 1, \ inch =
-,'g

foot GZ.)
Ans. (l) Reduce 0^325 foot, assuming metacentric curve horizontal ;

(2) reduce range to about 86f, assuming no change in cross-

curves from 5000 to 5024 tons.

2. The curve of statical stability of a vessel has the following values of

GZ at angular intervals of 15 : o, 0-55, 1*03, 0-99, O'66, 0-24, and 0*20

feet. Determine the loss in the range of stability if the C.G. of the ship
were raised 6 inches.

Ans. 16.

3. Obtain, by direct application of Atwood's formula, the moment of

stability in foot-tons at angles of 30, 60, and 90, in the case of a prismatic
vessel 140 feet long and 40 feet square in section, when floating with

sides vertical at a draught of 20 feet, the metacentric height being 2 feet.

4. A body of square section of 20 feet side and 100 feet long floats with

one face horizontal in salt water at a draught of 10 feet, the metacentric

height being 4 inches. Find the dynamical stability at 45.
Ans. 171 foot-tons.

5. Indicate how far a vessel having high bulwarks is benefited by them

as regards her stability. What precautions should be taken in their

construction to prevent them becoming a source of danger rather than of

safety ?

6. Show from Atwood's formula that a ship is in stable, unstable, or

neutral equilibrium according as the centre of gravity is below, above, or

coincident with the transverse metacentre respectively.

7. A vessel in a given condition displaces 4600 tons, and has the C.G.

in the ig-feet water-line. The ordinates of the cross-curves at this dis-

placement, with the C.G. assumed in the ig-feet water-line, measure as

follows: 0-63, 1-38, 2-15, 2-06, 1-37, 0-56 feet at angles of 15, 30,
45, 60, 75 and 90 respectively. The metacentric height is 2-4 feet.
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Draw out the curve of stability, and state (l) the angle of maximum
stability, (2) the angle of vanishing stability, and (3) find the dynamical
stability at 45 and 90.

Ans. (I) 50! ; (2) ioo| ; (3) 3694, 9650 foot-tons.

8. A vessel has a metacentric height of 3^4 feet, and the curve of stability
has ordinates at 15, 30, 37J, 45, and 60 of O'9, 1-92, 2'O2, 1*65, and

0-075 feet respectively. Draw out this curve, and state the angle of

maximum stability and the angle at which the stability vanishes.

Ans. 35J, S9t.
9. A vessel's curve of stability has the following ordinates at angles of

15, 30, 45, 60, and 75, viz. 0-51, 0*97, 0-90, 0-53, and o -o8 feet

respectively. Estimate the influence on the range of stability caused by
lifting the centre of gravity of the ship O'2 feet.

Ans. Reduce nearly 6.
10. A square box of 18 feet side floats at a constant draught of 6 feet,

the centre of gravity being in the water-line. Obtain, by direct drawing or

otherwise, the value of GZ up to 90 at say 6 angles. Draw in the curve
of statical stability, and check it by finding its area and comparing that

with the dynamical stability of the box at 90.
(Dynamical stability at 90 = 3 X weight of box.)

11. A vessel fully loaded with timber, some on the upper deck, starts

from the St. Lawrence River with a list. She has two cross-bunkers extend-

ing to the upper deck. She reaches a British port safely, with cargo undis-

turbed, but is now upright. State your opinion as to the cause of this.

12. Show by reference to the curves of stability of box-shaped vessels

on p. 163 that at the angle at which the deck edge enters the water the

tangent to the curve makes the maximum angle with the base-line.



CHAPTER VI.

CALCULATION OF WEIGHTS AND STRENGTH OF BUTT
CONNECTIONS. STRAINS EXPERIENCED BY SHIPS.

Calculations of Weights. - - We have discussed in

Chapter I. the ordinary rules of mensuration employed in find-

ing the areas we deal with in ship calculations. For any

given uniform plate we can at once determine the weight

if the weight per square foot is given. For iron and steel

plates ,of varying thicknesses, the weight per square foot is

given on p. 36. For iron and steel angles and f bars of

varying sizes and thicknesses tables are calculated, giving the

weight per lineal foot. Such a table is given on p. 189 for

steel angles, etc., the thicknesses being in -^-ths of an inch. It

is the Admiralty practice to specify angles, bars, etc., not in thick-

ness, but in weight per lineal foot. Thus an angle bar 3" x 3"

is specified to weigh 7 Ibs. per lineal foot, and a Z bar 6" X

3!" x 3" is specified to weigh 15 Ibs. per lineal foot. When the

bars are specified in this way, reference to tables is unnecessary.

The same practice is employed with regard to plates, the thick-

ness being specified as so many pounds to the square foot.

If we have given the size of an angle bar and its thick-

ness, we can determine its weight per foot as follows : Assume

the bar has square corners, and is square at the root, then, if

a and b are the breadth of the flanges in inches, and / is the

thickness in inches, the length of material / inches thick in the

section is (a + b f) inches, or - feet
;
and if the bar

I 2

is of iron, the weight per lineal foot is

+ b- t \
J
X 40 X t Ibs.
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If the bar is of steel, the weight per lineal foot is

a -f b t'
L \

I X 40*8 x / Ibs.

Thus a 3" X 3" X f" steel angle bar would weigh 7-17 Ibs.,

and a steel angle bar 3" X 3" of 7 Ibs. per foot would be

slightly less than f inch thick.

It is frequently necessary to calculate the weight of a

portion of a ship's structure, having given the particulars of

its construction; thus, for instance, a bulkhead, a deck,

or the outer bottom plating. In any case, the first step must

be to find the area of plating and the lengths of angle bars.

The weight of the net area of the plating will not give us the

total weight _of the plating, because we have to allow for butt

straps, laps, rivet-heads, and in certain cases liners. The method

employed to find the allowance in any given case is to take a

sample plate and find what percentage the additions come to

that affect this plate, and to use this percentage as an addition

to the net weight found for the whole. To illustrate this, take

the following example :

A deck surface of 10,335 square feet is to be covered with j^-inch
steel plating, worked flush, jointed with single-riveted edges and butts.

Find the weight of the deck, allowing 3 per cent, for rivet-heads.

fg-inch steel plates are 1275 Ibs. per square foot, so that the net

weight is

io,335 x 1275 =8 .8tons
2240

Now, assume an average size for the plates, say 16' X 4'. J-inch rivetb

will probably be used, and the width of the edge strip and butt strap will

be about 5 inches. The length round half the edge of the plate is 20 feet,

and the area of the strap and lap belonging to this plate is

20 X & = 8-33 square feet

The percentage of the area of the plate is therefore

8-33̂ X 100 = 13 per cent.
04

Adding 3 per cent, for rivet-heads, the percentage to add to the net weight
is 16 per cent., or 9*4 tons. The total weight is therefore 68'2 tons.

It is usual to add 3 per cent, to allow for the weight of rivet-

heads. For lapped edges and butt straps, both double riveted,
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the percentage
* comes to about 10 per cent, for laps, 5 1- per cent,

for butt straps, and 3 per cent, for liners as ordinarily fitted to

the raised strakes of plating. No definite rule can be laid

down, because the percentage must vary according to the

particular scantlings and method of working the plating, etc.,

specified.

The length of stiffeners or beams required for a given area

can be very approximately determined by dividing the area in

square feet by the spacing of the stiffeners or beams in feet.

For wood decks, 3 per cent, can be added for fastenings.

Example. The beams of a deck are 3 feet apart, and weigh 22 Ib.s.

per foot run ; the deck plating weighs 10 Ibs. per square foot, and this is

covered by teak planking 3 inches thick. Calculate the weight of a part

54 feet long by 10 feet wide of this structure, including fastenings.

(S. and A. Exam. 1897.)

Net area of deck = 54 x 10 = 540
Add for butts and laps 7 per cent. = 37-8

577-8
(Assume single-riveted butt straps and single-riveted laps.)

Weight of plating = 5 77 '8 X 10
= 5778 Ibs.

Running feet of beams = ^ = 180

Weight of beams = 180 X 22
= 3960 Ibs.-

Total weight of plating and beams = 9,738 Ibs.

Add 3 per cent, for rivet-heads = 292 ,,

10,030 ,,

Weight of teak 3 = 540 X -f
= 6750 Ibs,

Add 3 per cent, for fastenings = 202 ,,

Weight of wood deck 6952 ,,

Summary.

Plating and beams ... ... ... 10,030 lbs<

Wood deck ... ... 6,952 ,,

Total ... 16,982 = 7-6 tons.

1 A number of percentages worked out for various thicknesses, etc.,
will be found in Mr. Mackrow's " Pocket Book."

2 No allowance made for beam arms, which should be done if a whole
deck is calculated.

3 Teak taken as 50 Ibs. per cubic foot.
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Use of Curves. For determining the weight of some of

the portions of a ship, the use of curves is found of very great

assistance. Take, for instance, the transverse framing of a ship.

For a certain length this framing will be of the same character,

as, for example, in a battleship, within the double bottom,

where the framing is fitted intercostally between the longi-

tudinals. We take a convenient number of sections, say the

sections on the sheer drawing, and calculate the weight of the

complete frame at each section. Then along a base of length

set up ordinates at the sections, of lengths to represent the

calculated weights of the frames at the sections. Through the

spots thus obtained draw a curve, which should be a fair line.

The positions of the frames being placed on, the weight of each

frame can be obtained by a simple measurement, and so the

total weight of the framing determined. The curve AA in

Fig. 82 gives a curve as constructed in this way for the transverse

framing below armour in the double bottom of a battleship.

Before and abaft the double bottom, where the character of the

framing is different, curves are constructed in a similar manner.

Weight of Outer Bottom Plating. The first step

necessary is to determine the area we have to deal with. A\ e

FIG. 82.

can construct a curve of girths, as BB, Fig. 82
;
but the area given

by this curve will not give us the area of the plating, because

although the surface is developed in a transverse direction
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there is no development in a longitudinal direction. (Strictly

speaking, the bottom surface of a ship is an undevelopable

surface.) The extra area due to the slope of the level lines is

allowed for as follows : In plate I., between stations 3 and 4,

a line fg is drawn representing the mean slope of all the level

lines. Then the ordinate of the curve of girths midway
between 3 and 4 stations is increased in the ratio fg : h. This

done all along the curve will give us a new modified curve of

girths, as B'B', Fig. 82, and the area given by this curve will give

a close approximation to the area of the outer bottom of the

ship. This is, of course, a net area without allowing for butt,

straps or laps. Having a modified curve of girths for the

whole length, we can separate it into portions over which the

character of the plating is the same. Thus, in a vessel built

under Lloyd's rules, the plating is of certain thickness for one-

half the length amidships, and the thickness is reduced before

and abaft. Also, in a battleship, the thickness of plating is the

same for the length of the double bottom, and is reduced

forward and aft. The curves AA and BB, Fig. 82, are con-

structed as described above for a length of 244 feet.

Weight of Hull. 'By the use of these various methods,
it is possible to go right through a ship and calculate the

weight of each portion of the structure. These calculable

portions for a battleship are

(1) Skin-plating and plating behind armour.

(2) Inner bottom plating.

(3) Framing within double bottom, below armour, behind

armour, and above armour. Outside double bottom, below

and above the protective deck.

(4) Steel and wood decks, platforms, beams.

(5) Bulkheads.

(6) Topsides.

There are, however, a large number of items that cannot be

directly calculated, and their weights must be estimated by

comparison with the weights of existing ships. Such items

are stem and stern posts, shaft brackets, engine and boiler

bearers, rudder, pumping and ventilation arrangements, pillars,

paint, cement, fittings, etc.

o
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It is, however, a very laborious calculation to determine

the weight of the hull of a large ship by these means; and
more often the weight is estimated by comparison with the

ascertained weight of existing ships. The following is one

method of obtaining the weight of steel which would be used in

the construction of a vessel : The size of the vessel is denoted

by the product of the length, breadth, and depth, and for known

ships the weight of steel is found to be a certain proportion of

this number, the proportion varying with the type of ship.

The coefficients thus obtained are tabulated, and for a new ship

the weight of steel can be estimated by using a coefficient

which has been obtained for a similar type of ship. The weight
of wood and outfit can be estimated in a similar manner.

Another method is described by Mr. J. Johnson, M.I.N.A.,
in the Transactions of the Institution of Naral Architects for

1897, in which the sizes of vessels are represented by Lloyd's

longitudinal number,
1 modified as follows : In three-decked

vessels, the girths and depths are measured to the upper deck

1

Lloyd's numbers
1. The scantlings and spacing of the frames, reversed frames, and floor-

plates, the thickness of bulkheads and the diameter of pillars are regulated

by numbers, which are produced as follows :

2. For one and two decked vessels, the number is the sum of the

measurements in feet arising from the addition of the half-moulded breadth
of the vessel at the middle of the length, the depth from the upper part of

the keel to the top of the upper-deck beams, with the normal round-up,
and the girth of the half midship frame section of the vessel, measured from
the centre line at the top of the keel to the upper-deck stringer plate.

3. For three-deck steam-vessels, the number is produced by the

deduction of 7 feet from the sum of the measurements taken to the top of

the upper-deck beams.

4. For spar-decked vessels and awning-decked steam-vessels, the

number is the sum of the measurements in feet taken to the top of the main-

deck beams, as described for vessels having one or two decks.

5. The scantlings of the keel, stem, stern-frame, keelson, and stringer

plates, the thickness of the outside plating and deck ; also the scantlings
of the angle bars on beam stringer plates, and keelson and stringer angles
in hold, are governed by the longitudinal number obtained by multiplying
that which regulates the size of the irames, etc., by the length of the vessel.

The measurements for regulating the above scantling numbers are taken

as follows :

I. The length is measured from the after part of the stem to the fore part
of the stern-post on the range of the upper-deck beams in one, two, and
three decked and spar-decked vessels, but on the range of main-deck beams
in awning-decked vessels.

In vessels where the stem forms a cutwater, the length is measured from
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without deducting 7 feet. In spar and awning-deck vessels,

the girths are measured to the spar or awning decks respec-

tively. In one, two, and well-decked vessels, the girths and

depths are taken in the usual way. Curves are drawn for each

type of vessel, ordinates being the weight of iron or steel in

tons for vessels built to the highest class at Lloyd's or Veritas,

and abscissae being Lloyd's longitudinal number modified as

above. These curves being constructed for ships whose weights
are known, it is a simple matter to determine the weight for a new

ship of given dimensions. For further information the student

is referred to the paper in volume 39 of the Transactions.

To calculate the Position of the Centre of Gravity
of a Ship. We have already seen in Chapter III. how to find

the C.G. of a completed ship by means of the inclining experi-

ment, and data obtained in this way are found very valuable in

estimating the position of the C.G. of a ship that is being

designed. It is evident that the C.G. of a ship when com-

pleted should be in such a position as to obtain the metacentric

height considered necessary, and also to cause the ship to float

correctly at her designed trim. Suppose, in a given ship, the C.G.

of the naked hull has been obtained from the inclining experi-

ment (that is, the weights on board at the time of the experi-

ment that do not form part of the hull are set down and their

positions determined, and then the weight and position of the

C.G. of the hull determined by the rules we have dealt with in

Chapter III.). The position of the C.G. of hull thus determined

is placed on the midship section, and the ratio of the distance

of the C.G. above the top of keel to the total depth from the

top of keel to the top of the uppermost deck amidships will

the place where the upper-deck beam line would intersect the after edge of
stem if it were produced in the same direction as the part below the

cutwater.

2. The breadth in all cases is the greatest moulded breadth of the vessel.

3. The depth in one and two decked vessels is taken from the upper
part of the keel to the top of the upper-deck beam at the middle of the

length, assuming a normal round-up of beam of a quarter of an inch to a
foot of breadth. In spar-decked vessels and awning-decked vessels, the

depth is taken from the upper part of the keel to the top of the main-deck
beam at the middle of the length, with the above normal round-up of
beam.
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give us a ratio that can be used in future ships of similar type
for determining the position of the C.G. of the hull. Thus, in

a certain ship the C.G. of hull was 20*3 feet above keel, the

total depth being 34*4 feet. The above ratio in this case is

therefore 0^59, and for a new ship of similar type, of depth 39^5

feet, the C.G. of hull would be estimated at 39^5 X 0*59, or 23*3

feet above the keel. For the fore-and-aft position, a similar ratio

may be obtained between the distance of the C.G. abaft the

middle of length and the length between perpendiculars. In-

formation of this character tabulated for known ships is found

of great value in rapidly estimating the position of the C.G.

in a new design.

For a vessel of novel type, it is, however, necessary to cal-

culate the position of the C.G., and this is done by combining

together all the separate portions that go to form the hull.

Each item is dealt with separately, and its C.G. estimated as

closely as it is possible, both vertically and in a fore-and-aft

direction. These are put down in tabular form, and the total

weight and position of the C.G. determined.

In estimating the position of the C.G. of the bottom plating,

we proceed as follows : First determine the position of the

C.G. of the several curves forming the half-girth at the various

stations. This is not generally at the half-girth up, but is some-

where inside or outside the line of the curve. Fig. 83 represents

the section AB at a certain station. The curve is divided into

four equal parts by dividers, and the C.G. of each of these parts

is estimated as shown. The centres of the first two portions

are joined, and the centres of the two top portions are joined
as shown. The centres of these last-drawn lines, g^ #.,, are

joined, and the centre of the line g^g.^ viz. G, is the C.G. of

the line forming the curve AB, and GP is the distance from the

L.W.L. This done for each of the sections will enable us to

put a curve, CC in Fig. 82, of distances of C.G. of the half-

girths from the L.W.L. 1 We then proceed to find the C.G. of

the bottom plating as indicated in the following table. The

area is obtained by putting the half-girths (modified as already

1 This assumes the plating of constant thickness. Plates which are

thicker, as at keel, bilge, and sheer, can be allowed for afterwards.
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explained) through Simpson's rule. These products are then

multiplied in the ordinary way to find the fore-and-aft position

of the C.G. of the plating, and also by the distances of the C.G.

FIG.

of the sections below the L.W.L., which distances are measured

off from the curve CC and are placed in column 6. The
remainder of the work does not need any further explanation.

CALCULATION FOR ARKA AND POSITION OF C.G. OF BOTTOM PLATING
FOR A LENGTH OF 244 FEET.

Modified

half-girths.
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Common interval = 61 feet

Area both sides = 587-8 X ^ X 61 x 2

= 23,904 square feet

C.G. abaft middle of length of plating = - x 61
587-8

=
1-45 feet

C.G. below L.W.L. =
I

%45 8 = 21-2 feet
587-8

CALCULATION FOR THE POSITION OF THE C.G. OF A VESSEL.
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Calculation for C.G. of a Completed Vessel. By the

use of the foregoing methods we can arrive at an estimate of

the weight of hull, and also of the position of its C.G. relative

to a horizontal plane, as the L.W.P., and to a vertical athwart-

ship plane, as the midship section. To complete the ship for

service, there has to be added the equipment, machinery, etc.,

and the weights of these are estimated, as also the positions of

their centres of gravity. The whole is then combined in a

table, and the position of the C.G. of the ship in the completed
condition determined.

The preceding is such a table as would be prepared for a

small protected cruiser. It should be stated that the table is

not intended to represent any special ship, but only the type of

calculation.

The total weight is 2630 tons, and the C.G. is 0*857 foot

above the L.W.L. and n'88 feet abaft the middle of length.

The sheer drawing enables us to determine the position of the

transverse metacentre, and the estimated G.M. is found to be

2'ii3 feet. The centre of buoyancy calculated from the sheer

drawing should also be, if the ship is to trim correctly, at a

distance of 1 1 '88 feet abaft the middle of length.

Strength of Butt Fastenings. Fig. 84 represents two

plates connected together by an ordinary treble-riveted butt

strap. The spacing of the rivets in the line of holes nearest

the butt is such that the joint can be caulked and made water-

tight, and the alternate rivets are left out of the row of holes

farthest from the butt. Such a connection as this could con-

ceivably break in five distinct ways
1. By the whole of the rivets on one side of the butt

shearing.

2. By the plate breaking through the line of holes, AA,
farthest from the butt.

3. By the butt strap breaking through the line of holes, BB,
nearest the butt.

4. By the plate breaking through the middle row of holes,

CC, and shearing the rivets in the line AA.

5. By the strap breaking through the middle row of holes,

CC, and shearing the rivets in the line BB.
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It is impossible to make such a connection as this equal to

the strength of the unpunched plate, because, although we might

A .&.
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FIG. 84.

if
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put in a larger number of rivets and thicken up the butt strap,

FIG. 85.

there would still remain the line of weakness of the plate

through the line of holes, AA, farthest from the butt.
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The most efficient form of strap to connect two plates

together would be as shown in Fig. 85, of diamond shape.

Here the plate is only weakened to the extent of one rivet-hole.

Such an efficient connection as this is not required in ship con-

struction, because in all the plating we have to deal with, such

as stringers and outer bottom-plating, the plate is necessarily

weakened by the holes required for its connection to the

beam or frame, and it is unnecessary to make the connection

stronger than the plate is at a line of holes for connecting it

to the beam or frame. In calculating the strength of a butt

connection, therefore, we take as the standard strength the

strength through the line of holes at a beam or frame,

and we so arrange the butt strap that the strength by any
of the modes of fracture will at least equal this standard

strength.

Experimental Data. Before we can proceed to calcu-

late the strength of these butt connections, we must have some

experimental data as to the tensile strength of plates and the

shearing strength of rivets. The results of a series of experi-

ments were given by Mr. J. G. Wildish at the Institution of

Naval Architects in 1885, and the following are some of the

results given :

SHEARING STRENGTH OF RIVETS IN TONS.

(Pan heads and countersunk points.)

"\
inch iron rivets in

i'
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The following results were given as the results of tests of

mild steel plates :

Unpunched ... ... ... ... 28^ tons per square inch.

Holes punched ... ... ... ... 22 ,, ,,

or a depreciation of 22 per cent.

Holes drilled ... ... ... ... 29^ tons per square inch.

Holes punched small, and the hole then \

countersunk ... ... ... . . . /

The following give the strength of the material of the plates

after being connected together by a butt strap :

Holes punched the full si/.e, the )

,
. 24*0 tons per square inch,

rivets having snap points

Holes punched small and then conn- \

tcrsnnk, the rivets being pan- V 28*9

head, with countersunk points

It appears, from the above results, that if a plate has the

holes drilled or has them punched and countersunk in the

ordinary way as for flush riveting, the strength of the material

is fully maintained. Also that, although punching holes in a

plate reduces the strength from 28^ to 22 tons per square inch,

a reduction of 22 per cent., yet when connected by a butt strap,

and riveted up, the strength rises to 24*9 tons per square inch,

which is only 1 2 per cent, weaker than the unpunched plate, the

process of riveting strengthening the plate.

In an ordinary butt-strap, with the holes spaced closely

together in order to obtain a water-tight pitch for the rivets, it

is found that the punching distresses the material in the neigh-

bourhood of the holes, and the strength is materially reduced,

as we have seen above. If, however, the butt strap is annealed

after punching, the full strength of the material is restored. It

is the practice, in ships built for the British Admiralty, for all

butt straps of important structural plating to have the holes

drilled or to be annealed after punching.
1 In either case the

1 In ships built for the British Admiralty, for plating which forms an

important feature in the general structural strength, such as the inner and
outer bottom plating, deck plating, deck stringers, etc., the butt straps
must have the holes drilled, or be annealed after the holes are punched.
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strength is restored. For ships built to the rules of Lloyd's

Register, butt straps above
-|

of an inch in thickness are

annealed or the holes rimed after punching.
1

In our calculations of the strength of butt straps, we there-

fore can assume that the strength of the material between the

rivet-holes is the same as the strength of the material of the

unpunched plate.

Again, the plating, in the cases we have to deal with, has

the riveting flush on the outside, and the holes are made with

a countersink for this purpose. Here also we can assume that

the strength of the material is the same as the strength of the

material of the unpunched plate.

The specified tests for the tensile strength of steel plates

are as follows :

For ships built for the British Admiralty, not less than 26

and not more than 30 tons per square inch of section.

For ships built to the rules of Lloyd's Register, not less

than 28 and not more than 32 tons per square inch of

section.

The plates tested above showed a tensile strength of 28-

tons per square inch, or nearly midway between the limits laid

down by the British Admiralty. It seems reasonable, there-

fore, in calculating the ultimate strength of riveted joints, to

take as the strength of the material the minimum strength to

which it has to be tested. Thus, in a ship built for the British

Admiralty, we can use 26 tons as the strength per square inch

of section, and in a ship built under Lloyd's rules, we can use

28 tons per square inch of section.

The following two examples will illustrate the methods

adopted in calculating the strength of butt fastenings :

2

In such bottom plating, the countersunk holes must be punched about

\ inch less in diameter than the rivets which are used, the enlargement of

the holes being made in the countersinking, which must in nil cases be
carried through the whole thickness of the plates.

1 In ships built to the rules of Lloyd's Register, stringer plates, sheer-

strakes, garboard strakes, and all butt straps, when above $ of an inch in

thickness, are carefully annealed, or the holes sufficiently rimed after

punching, to remove the injurious effect of the punching.
3
Admiralty tests, etc., adopted.
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I. A steel stringer plate is 48 inches broad and 7g inch thick. Sketch
the fastenings in a beam and at a butt, and show by calculations that the

butt connection is a good one.

(S. and A. Exam., 1897.)
For a /s-inch plate we shall require f-inch rivets, and setting these out

at the beam, we require 9 rivets, as shown in Fig. 84. The effective breadtli

of the plate through this line of holes is therefore

48 - 9(1) = 4!:} inches

and the strength is

41 1 X fa X 26 = 470 tons

and this is the standard strength that we have to aim at in designing the

butt strap.

(1) As regards the number of rivets. The shearing strength of a f-incli
rivet being 11-5 tons, the number of rivets necessary to equal the standard

strength of 470 tons is

47- - = 4O'8, say 41 rivets

If we set out the rivets in the strap as shown in Fig. 84, leaving the

alternate rivets out in the line AA, it will be found that exactly 41 rivets

is obtained, with a four-diameter pitch. So that, as regards the number of

rivets the butt connection is a good one.

(2) The strength of the plate in the line AA is the same as at the beam,
the same number of rivet-holes being punched in each case.

(3) If the strap is T;;
inch thick, the strength of the strap in the line BI5

is given by

{48
-

i6(|)} X yg X 26 = 410 tons

This is not sufficient, and the strap must be thickened up. If made J inch

thick, the strength is

[48- i6(f)} X i X 26 = 468

Which is very nearly equal to the standard strength of 470 tons.

(4) The shear of the 9 rivets in the line AA is 103*5 tons, so that the

strength of the plate through the line of holes CC and the shear of the

rivets in the line AA are

410+ 103-5 = S 1 3'5 tons

(5) Similarly, the strength of the strap through the line CC and the

shear of the rivets in the line AA are

468 + 184 = 652 tons

The ultimate strengths of the butt connection in the five different ways it

might break are therefore 47lJ, 470, 468, 513^, 652 tons respectively, and
thus the standard strength of 470 tons is maintained for all practical

purposes, and consequently the butt connection is a good one.

2. If it were required to so join two plates as to make the strength at

the butt as nearly as possible equal to that of the unpierced plates, what
kind of butt strap would you adopt ?
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Supposing the plates to be of mild steel 36 inches wide and inch thick,

give the diameter, disposition, and pitch of rivets necessary in the strap.

(S. and A. Exain., 1895.)
The first part of this question has been already dealt with on p. 201.

To lessen the number of rivets, it is best to use a double butt strap, as

I-'ig. 85, so as to get a double shear of the rivets. Each of the butt straps
should be slightly thicker than the half-thickness of the plate, say T

5
,.
inch.

The standard strength to work up to is that of the plate through the

single rivet-hole at the corner of the strap, f-inch rivets being used, the

standard strength is

(36
-

i-) X \ X 26 = 457 tons

The single shear of a |-inch rivet is 15\ tons, and the double shear may be

taken as

i5'25 x i '8 = 27^ tons

and consequently the least number of rivets required each side of the

butt is

23-L = 1 6 -6, say 17 rivets

27'S

The strength of the plate along the slanting row of holes furthest from
the butt must be looked into. The rivets here are made with a water-tight
pitch, say from 4 to 4^ diameters. If we set out the holes for a strap 2 feet

wide, it will be found that the strength is below the standard. A strap
3 feet wide will, however, give a strength through this line of about 465
tons, which is very near the required 457 tons. There are 13 rivets along
the edge of the strap, and the inside may be filled in as shown, giving a
total number of rivets, each side of the butt, of 19.

Strains experienced by Ships. The strains to which

ships are subjected may be divided into two classes, viz.

1. Structural strains, i.e. strains which affect the structure

of the ship considered as a whole.

2. Local strains, i.e. strains which affect particular portions

of the ship.

1 . Structural Strains. These may be classified as

follows :

(a) Strains tending to cause the ship to bend in a fore-and-

aft direction.

(b) Strains tending to change the transverse form of the ship.

(c) Strains due to the propulsion of the vessel, either by
steam or sails.

2. Local Strains. These may be classified as follows :

(a) Panting strains.

(b) Strains due to heavy local weights, as masts, engines,

armour, guns, etc.
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(c) Strains caused by the thrust of the propellers.

(d) Strains caused by the attachment of rigging.

(e) Strains due to grounding.
We will now deal with some of these various strains to

which a ship may be subjected in a little more detail.

Longitudinal Bending Strains. A ship may be regarded as

a large beam or girder, subject to bending in a fore-and-aft

direction. The support of the buoyancy and the distribution

of weight vary considerably along the length of a ship, even

when floating in still water. Take a ship and imagine she is

cut by a number of transverse sections, as in Fig. 86. Each

FIG. 86.

of the portions has its weight, and each has an upward support

of buoyancy. But in some of the portions the weight exceeds

the buoyancy, and in others the buoyancy exceeds the weight.

The total buoyancy of all the sections must, of course, equal the

total weight. Now imagine that there is a water-tight bulkhead

at each end of each of these portions, and the ship is actually

cut at these sections. Then the end portions (i) and (5) have

considerable weight but small displacement, and consequently

they would sink deeper in the water if left to themselves. 1 In

the portions (2) and (4), on the other hand, the buoyancy might
exceed the weight (suppose these are the fore-and-aft holds, and

the ship is light), and if left to themselves they would rise. The

1
Strictly speaking, each portion would change trim if left to itself, but

we suppose that the various portions are attached, but free to move in a

Vertical direction.
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midship portion (3) has a large amount of buoyancy, but also

a large weight of engines and boilers, and this portion might

very well have to sink a small amount if left to itself. In any
actual ship, of course, it is a matter of calculation to find how
the weight and buoyancy vary throughout the length. This

case is somewhat analogous to the case of a beam supported
and loaded as shown in Fig. 87. At each point along the

FIG. 87.

beam there is a tendency to bend, caused by the way the

beam is loaded and supported, and the beam must be made

sufficiently strong to withstand this bending tendency. In the

same way, the ship must be constructed in such a manner as to

effectually resist the bending strains that are brought to bear

upon the structure.

When a vessel passes out of still water and encounters

waves at sea, the strains to which she is subjected must differ

very much from those we have been considering above. Sup-

pose the ship to be end on to a series of waves having lengths

FIG.

from crest to crest or from trough to trough equal to the length
of the ship. We will take the two extremes,

(i) The ship is supposed to have the crest of the wave

amidships.
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(2) The ship is supposed to have the trough of the wave

amidships.

(i) This is indicated in Fig. 88. At this instant there is an

excess of weight at the ends, and an excess of buoyancy amid-

ships. The ship may be roughly compared to a beam supported

at the middle, with weights at the end, as in Fig. 89. The con-

FIG. So.

sequence is that there is a tendency for the ends to droop

relatively to the middle. This is termed hogging.

(2) This is indicated in Fig. 90. At this instant there is an

_

FIG. 90.

excess of weight amidships, and an excess of buoyancy at the

ends, and the ship may be roughly compared to a beam sup-

ported at the ends and loaded in the middle, as Fig. 91. The
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disposed in order best to withstand the bending strains, we will

consider briefly some points in connection with ordinary

beams. 1

Take a beam supported at the ends and loaded at the

middle. It will bend as shown exaggerated in Fig. 92. The

KIG. 92.

resistance the beam will offer to bending will depend on

the form of the section of the beam. Take a beam having
a sectional area of 16 square inches. We can dispose the

material in many different ways. Take the following :

(a) 8 inches wide, 2 inches deep (a, Fig. 93).

(b) 4 inches wide, 4 inches deep (b, Fig. 93).

(c) 2 inches wide, 8 inches deep (c, Fig. 93).

(if) 8 inches deep, with top and bottom flanges 5 inches wide

and i inch thick (d, Fig. 93).

(a,)

FIG. 93.

Then the resistances of these various sections to bending

compare as follows :

If (a) is taken as i, then (b) is 2, (c) is 4, and (d) is 6-f.

We thus see that we can make the beam stronger to resist

bending by disposing the material far away from the centre.

The beam (d) is 6f times the strength of (a) against bending,

although it has precisely the same sectional area. A line

1 The subject of beams will be found fully discussed in works on

Applied Mechanics,
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drawn transversely through the centre of gravity of the section

of a beam is termed the neutral axis.

These principles apply equally to the case of a ship, and

we thus see that to resist bending strains the material of the

structure should be disposed far away from the neutral axis. 1

In large vessels, and those of large proportion of length to

breadth or length to depth, Lloyd's rules require that partial

or complete steel decks shall be fitted on the upper decks, the

upper-deck stringer made wider and thickened up, the sheer

strake doubled or made thicker, the plating at the bilge

thickened up or doubled, and the keelsons increased in

strength. These are all portions of the structure farthest away
from the neutral axis.

For hogging strains, the upper portions of the vessel are

in tension and the lower portions are in compression. For

sagging strains, the upper portions are in compression and the

lower portions are in tension. Thus the portions of the struc-

ture that are useful in resisting these hogging and sagging strains

are the upper and main decks and stringers, sheer-strake and

plating below, plating at and below the bilge, both of the inner

and outer bottom, keel, keelsons, and longitudinal framing.

Strains tending to change the Transverse Form of tht Ship.

Strains of this character are set up in a ship rolling heavily.

Take a square framework jointed at the corners, and imagine
it to be rapidly moved backwards and fonvards as a ship does

when she rolls. The framework will not break, but will distort,

as shown in Fig. 94. There is a tendency to distort in a similar

way in a ship rolling heavily, and the connections of the beams

to the sides, and the transverse structure of the ship, must be

made sufficiently strong to prevent any of this racking taking

place. Transverse bulkheads are valuable in resisting the

tendency to change the transverse form. In ships built to

Lloyd's Register, the ordinary depth ofbeam arms is 2^ times the

depth of the beam
;
but in sailing-ships, which only have one

transverse bulkhead, the collision bulkhead, when the length of

1 There are other strains, viz. shearing strains, which are of importance
(see "Applied Mechanics," by Professor Cotterill, and a paper read at the

Institution of Naval Architects in 1890, by the late Professor Jenkins).
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the midship upper-deck beam exceeds 36 feet, the bracket

knees to each tier of beams must not be less than three times

the depth of the beam, and the depth at the throat not less

than one and three-quarters the depth of the beam. 1

A ship, when docked, especially if she has on board heavy

weights, as armour or coals, is subjected to severe strains tend-

ing to change the transverse form. If the ship is supported

wholly at the keel, no shores being supposed placed in position,

the weight either side the middle line tends to make the sides

drop, and bring the beams into tension. A ship when docked,

FIG. 94.

however, is partially supported by shores as well as at the keel

as the water leaves, so that this case is an extreme one.

Panting. This term is used to describe the working in

and out of the plating, and it is usually found at the fore and

after ends of the ship, where the surface is comparatively flat.

The forward end especially is subject to severe blows from the

sea, and special attention is paid to this part by working special

beams and stringers to succour the plating. In vessels built to

the rules of Lloyd's Register, the following rules have to be

carried out to provide sufficient local strength against panting :

All stringers, where practicable, to extend fore and aft, and

to be efficiently connected at their ends with plates forming
hooks and crutches of the same thickness as the floor-plates

amidships, and those below the hold beams should be spaced
about 4 feet apart. In vessels whose plating number 2

is 24,000,

1 There is also in sailing ships a couple due to the sails, tending to

distort the sections.
* See p. 194.
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or above, an additional hook or crutch should be fitted at the

ends of the vessel, between each tier of beams, to the satisfac-

tion of the Surveyors.

The depth for regulating the number of tiers of beams to

alternate frames in the fore peak to be taken at the collision

bulkhead. All vessels to have, in addition, provision made to

prevent panting by extra beams, bracket knees and stringer

plates being fitted before and abaft the collision bulkheads.

Panting beams and stringers to be fitted at the after end

where considered necessary by the Surveyors.

The stringer plates on the panting beams to be attached to

the outside plating when fitted in continuation of intercostal

stringers. These plates are to extend abaft the collision bulk-

head for a length of not less than one-fourth the midship
breadth of the vessel, and be efficiently supported by brackets

at alternate frames. Panting beams and stringers to be fitted

at the after end where considered necessary by the Surveyors.

The other local strains mentioned on pp. 205, 206 have to

be provided for by special local strengthening.

For a full discussion of the whole subject of the strains

experienced by ships, and the stresses on the material compos-

ing the structure, the student is referred to the "Manual of

Naval Architecture," by Sir W. H. White.

EXAMPLES TO CHAPTER VI.

1. The area of the outer bottom plating of a ship, over which the

plating is worked 25 Ibs. per square foot, is 23,904 square feet, lapped
edges and butt straps, both double-riveted. Estimate the difference in

weight due to working the plating with average-sized plates 20' X 4$', or

with the average size 12' X 3'.

Ans. About 20 tons.

2. Steel angle bars 3^" X 3" are specified to be 8J Ibs. per lineal foot

instead of ^ inch thick. Determine the saving of weight per 100 lineal

feet.

Ans. 52 Ibs.

3. Determine the weight per lineal foot of a steel T"Dar 5" x 4" x \"
Ans. I4'45 Ibs.

4. For a given purpose, angle bars of iron 5" X 3" X T
8
S

"
or of steel

5" X 3" X 2V' can be used. Find the saving of weight per 100 feet if steel

is adopted.
Ans. 95 Ibs.

5.
A mast 96 feet in length, if made of iron, is at its greatest diameter,
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viz. 32 inches, /g inch thick, and has three angle stiffeners 5" X 3" X T
8
6
".

For the same diameter, if made of steel, the thickness is $ inch, with three

angle stiffeners 5" x 3" X 5
9
". Estimate the difference in weight.

Ans. About I ton.

6. At a given section of a ship the following is the form : The lengths of

ordinates 3 feet apart are 19-6, 18-85, '7'8, i6'4, I4'5, 11*8, 7'35, and
i'O feet respectively. Estimate the vertical position of the centre of

gravity of the curve forming the section, supposing it is required to find the

vertical position of the centre of gravity of the bottom plating of uniform
thickness.

Ans. About I2j feet from the top.

7. The half-girths of the inner bottom of a vessel at intervals of 51 feet

are 26'6, 29-8, 32^0, 32-8, and 31-2 feet respectively, and the centres of

gravity of these half-girths are i8'6, 2O'6, 2I'2, 2O'O, I7'4feet respectively
below the L.W.L. Determine the area of the inner bottom and the

position of its centre of gravity both longitudinally and vertically. If the

plating is of 15 Ibs. to the square foot, what would be the weight, allowing
14! per cent, for butts, laps, and rivet-heads.

Ans. 12,655 square feet ; 105 feet from finer end, 20 feet below the

L.W.L. ; 97 tons.

8. The whole ordinates of the boundary of a ship's deck are 6'5, 24,

29. 32, 33'5 33'5. 33'5> 32, 3, 27, and 6-5 feet respectively, and the

common interval between them is 21 feet.

The deck, with the exception of 350 square feet, is covered with f inch
steel plating worked flush jointed, with single riveted edges and butts.

Find the weight of the plating, including straps and fastenings.
Ans. 45 tons.

9. A teak deck, 2^ inches thick, is supported on beams spaced 4 feet

apart, and weighing 15 pounds per foot run. Calculate the weight of a

middle-line portion of this deck (including fastenings and beams) 24 feet

long and 10 feet wide.

Ans. 1*55 tons.



CHAPTER VII.

IIORSE-POIVER, EFFECTIVE AND INDICATED RESIST-
ANCE OF SHIPS COEFFICIENTS OF SPEED LAW OF
CORRESPONDING SPEEDS.

Horse-power. We have in Chapter V. defined the
" work

"

done by a force as being the product of the force and the

distance through which the force acts. Into the conception
of work the question of time does not enter at all, whereas
"
power

"
involves not only work, but also the time in which

the work is done. The unit of power is a "
horse-power"

which is taken as "
33,000 foot-lbs. of work performed in i

minute" or "550 foot-lbs. of work performed in i second"

Thus, if during i minute a force of i Ib. acts through 33,000

feet, the same power will be exerted as if a force of 33 Ibs. acts

through 1000 feet during i minute, or if 50 Ibs. acts through
1 1 feet during i second. Each of these will be equivalent to

i horse-power. The power of a locomotive is a familiar in-

stance. In this case the work performed by the locomotive

if the train is moving at a uniform speed is employed in

overcoming the various resistances, such as the friction of the

wheels on the track, the resistance of the air, etc. If we

know the amount of this resistance, and also the speed of the

train, we can determine the horse-power exerted by the loco-

motive. The following example will illustrate this point :

If the mass of a train is 150 tons, and the resistance to its motion

arising from the air, friction, etc., amount to 16 Ibs. weight per ton when
the train is going at the rate of 60 miles per hour on a level plain, find the

horse-power of the engine which can just keep it going at that rate.

Resistance to onward motion = 150 X 16
= 2400 Ibs.

Speed in feet per minute = 5280
Work done per minute = 2400 X 5280 foot-lbs.

2400 x 5280
Horse-power =

33000
= 384
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In any general case, if

R = resistance to motion in pounds ;

v = velocity in feet per minute
;

V = velocity in knots (a velocity of i knot is 6080 feet

per hour) ;

then

R X r
Horse-power = QO

_
R X V x ioi

33000

The case of the propulsion of a vessel by her own engines
is much more complicated than the question considered above

of a train being drawn along a level plain by a locomotive.

We must first take the case of a vessel being towed through
the water by another vessel. Here we have the resistances

offered by the water to the towed vessel overcome by the strain

in the tow-rope. In some experiments on H.M.S. Greyhound

by the late Mr. Froude, which will be described later, the tow-

rope strain was actually measured, the speed being recorded

at the same time. Knowing these, the horse-power necessary
to overcome the resistance can be at once determined. For

example

At a speed of 1017 feet per minute, the tow-rope strain was 10,770 Ibs.

Find the horse-power necessary to overcome the resistance.

Work done per minute = 10,770 X 1017 foot-lbs.

10770 X 1017
Horse-power =

33000
= 332

Effective Horse-power. The effective horse-power of

a vessel at a given speed is the horse-power required to over-

come the various resistances to the vessel's progress at that

speed. It may be described as the horse-power usefully

employed, and is sometimes termed the
"
tow-rope

"
or

"
tug

"

horse-power, because this is the power that would have to be

transmitted through the' tow-rope if the vessel were towed

through the water at the given speed. Effective horse-power

is often written E.H.P. We shall see later that the E.H.P. is

entirely different to the Indicated Horse-power (written I.H.P.),
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which is the horse-power actually measured at the vessel's

engines.

Example. -Find the horse-power which must be transmitted through
a tow-rope in order to tow a vessel at the rate of 16 knots, the resistance to

the ship's motion at that speed being equal to a weight of 50 tons.

Ans. 5503 H.P.

Experiments with H.M.S. "Greyhound," by the

late Mr. William Froude, F.R.S. These experiments
took place at Portsmouth as long ago as 1871, and they settled

a number of points in connection with the resistance and pro-

pulsion of ships, about which, up to that time, little was known.

The thoroughness with which the experiments were carried

out, and the complete analysis of the results that was given,

make them very valuable
;
and students of the subject would

do well to consult the original paper in the Transactions of the

Institution of Naval Architects for 1874. A summary of the

experiments, including a comparison with Rankine's "Aug-
mented Surface Theory of Resistance," will be found in vol. iii.

of Naval Science. Mr. Froude's report to the Admiralty was

published in Engineering, May i, 1874.
The Greyhound was a ship 172' 6" in length between per-

pendiculars, and 33' 2" extreme breadth, the deepest draught

during the experiments being 13' 9" mean. The displacement

Fic. 95.

corresponding to this mean draught being 1161 tons; area of

midship section, 339 square feet
;

area of immersed surface,

7540 square feet. The Greyhound was towed by H.M.S.

Active. It was essential to the accuracy of the experiments

that the Greyhound should proceed through undisturbed water,

and to avoid using an exceedingly long tow-rope a boom was

rigged out from the side of the Active to take the tow-rope (see

Fig. 95). By this means the Greyhound proceeded through
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water that had not been influenced by the wake of the Active.

The length of the boom on the Active was 45 feet, and the length

of the tow-rope was such that the Greyhound's bow was 190
feet clear of the Active's stern. The actual stress on the tow-

rope at its extremity was not required, but the
" horizontal

component." This would be the stress that was overcoming
the resistance, the "vertical component" being due to the

weight of the tow-rope. The horizontal stress on the tow-rope

and the speed were automatically recorded on a sheet of paper
carried on a revolving cylinder. For details of the methods

employed and the apparatus used, the student is referred to

2D.OOO

r
SPEED IN KNOTS.

FIG. 96.

the sources mentioned above. The horizontal stress on the

tow-rope was equal to the nett resistance of the Greyhound.
The results can be represented graphically by a curve, abscissas

representing speed, and ordinates representing the resistance

in pounds. Such a curve is given by A in Fig. 96.
It will be seen that the resistance increases much more

rapidly at the higher than at the .lower speeds; thus, on

increasing the speed from 7 to 8 knots, an extra resistance

of 1500 Ibs. has to be overcome, while to increase the speed



2iS Theoretical Naval Architecture.

from ii to 1 2 knots, an extra resistance of 6000 Ibs. must

be overcome. Beyond 12 knots the shape of the curve

indicates that the resistance increases very rapidly indeed.

Now, the rate at which the resistance increases as the speed
increases is a very important matter. (We are only concerned

now with the total resistance.) Up to 8 knots it was found

that the resistance was proportional to the square of the speed :

that is to say, if Rt ,
R, represent the resistances at speeds

Vj, V2 respectively, then, if the resistance is proportional to

the square of the speed

R, : R, : : Vt
3

: V.,-

or
Rl - V'

2

0r
RT~"vV

By measuring ordinates of the curve in Fig. 96, say at 5 and 6

knots, this will be found to be very nearly the case. As the

speed increases above 8 knots, the resistance increases much

more rapidly than would be given by the above
;
and between

ii and 12 knots, the resistance is very nearly proportional to

the fourth power of the speed.
The experiments were also conducted at two displacements

less than 1161 tons, viz. at 1050 tons and 938 tons. It was

found that differences in resistance, due to differences of

immersion, depended, not on changes of area of midship
section or on changes of displacement, but rather on changes
in the area of wetted surface. Thus for a reduction of 19^

per cent, in the displacement, corresponding to a reduction of

area of midship section of 16^ per cent., and area of immersed

surface of 8 per cent., the reduction in resistance was about

ia
s P61

" cent. s
this being for speeds between 8 and 12 knots.

Ratio between Effective Horse-power and Indi-

cated Horse-power. We have already seen that, the

resistance of the Greyhound at certain speeds being deter-

mined, it is possible to determine at once the E.H.P. at

those speeds. Now, the horse-power actually developed by the

Greyhound's own engines, or the "indicated horse-power"

(I.H.P.), when proceeding on the measured mile, was observed

on a separate series of trials, and tabulated. The ratio of the



Horse-power, Effective and Indicated, etc. 219

E.H.P. to the I.H.P. was then calculated for different speeds,

and it was found that E.H.P. -J- I.H.P. in the best case was

only 0*42 ;
that is to say, as much as 58 per cent, of the power

was employed in doing work other than overcoming the actual

resistance of the ship. This was a very important result, and

led Mr. Froude to make further investigations in order to

determine the cause of this waste of power, and to see whether

it was possible to lessen it.

p TT p
The ratio yTr~b at any given speed is termed the "pro-

pulsive coefficient" at that speed. As we saw above, in the

most efficient case, in the trials of the
"
Greyhound" this co-

efficient was 42 per cent. For modern vessels with fine lines a

propulsive coefficient of 50 per cent, may be expected, if the

engines are working efficiently and the propeller is suitable.

In special cases, with extremely fine forms and fast-running

engines, the coefficient rises higher than this. These values only
hold good for the maximum speed for which the vessel is

designed ;
for lower speeds the coefficient becomes smaller.

The following table gives some results as given by Mr. Froude.

The Mutine was a sister-ship to the Greyhound, and she had

also been run upon the measured mile at the same draught and

trim as the Gre\hound.
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Resistance. We now have to inquire into the various

resistances which go to make up the total resistance which a

ship experiences in being towed through the water. These

resistances are of three kinds

1. Resistance due to friction of the water upon the surface

of the ship.

2. Resistance due to the formation of eddies.

3. Resistance due to the formation of waves.

1.
" Frictional resistance" or the resistance due to the

friction of the water upon the surface of the ship. This is

similar to the resistance offered to the motion of a train on a

level line owing to the friction of the rails, although it follows

different laws. It is evident that this resistance must depend

largely upon the state of the bottom. A vessel, on becoming
covered with barnacles, etc., while lying in a port, loses speed

very considerably, owing to the greatly increased resistance

caused. This frictional resistance forms a large proportion of

the total at low speeds, and forms a good proportion at higher

speeds.

2. Resistance due to eddy-making. Take a block of wood,

and imagine it placed a good distance below the surface of

a current of water moving at a uniform speed V. Then

the particles of water will run as approximately indicated

in Fig. 97. At A we shall have a mass of water in a state of

FIG. 97.

violent agitation, and a much larger mass of water at the rear

of the block. Such masses of confused water are termed
" eddies" and sometimes " dead water" If now we imagine
that the water is at rest, and the block of wood is being towed
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through the water at a uniform speed V, the same eddies will

be produced, and the eddying water causes a very considerable

resistance to the onward motion. Abrupt terminations which

are likely to cause such eddies should always be avoided in

vessels where practicable, in order to keep the resistance as

low as possible. This kind of resistance forms a very small

proportion of the total in well-formed vessels, but in the older

vessels with full forms aft and thick stern-posts, it amounted to

a very considerable item.

3. Resistance due to the formation of waves. For low

speeds this form of resistance is not experienced to any
sensible extent, but for every ship there is a certain speed
above which the resistance increases more rapidly than would

be the case if surface friction and eddy-making alone caused

the resistance. This extra resistance is caused by the forma-

tion of waves upon the surface of the water.

We must now deal with these three forms of resistance in

detail, and indicate as far as possible the laws which govern
them.

i. Frictional Resistance. The data we have to work upon
when considering this form of resistance were obtained by the

late Mr. Froude. He conducted an extensive series of experi-

ments on boards of different lengths and various conditions

of surface towed through water contained in a tank, the speed
and resistance being simultaneously recorded. The follow-

ing table represents the resistances in pounds per square
foot due to various lengths of surface of various qualities when

moving at a uniform speed of 600 feet per minute, or very

nearly 6 knots. There is also given the powers of the speed
to which the resistances are approximately proportional.

We can sum up the results of these experiments as follows :

The resistance due to the friction! of the water upon the surface

depends upon

(1) The area of the surface.

(2) The nature of the surface.

(3) The length of the surface.

and (4) The resistance varies approximately as the square of

the speed.
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desirable to extend these experiments, and the law they eluci-

date, to greater lengths of surface than 50 feet
;
but this is the

greatest length which the experiment-tank and its apparatus

admit, and I shall endeavour to organize some arrangement by
which greater lengths may be successfully tried in open water."

Mr. Froude was never able to complete these experiments

as he anticipated. It has long been felt that experiments with

longer boards would be very valuable, so that the results could

be applied to the case of actual ships. It is probable that in

the new American experimental tank now under construction,

which is to be of much greater length than any at present in

existence, experiments with planes some hundreds of feet in

length may be carried out.

These experiments show very clearly how important the

condition of the surface is as affecting resistance. The
varnished surface may be taken as typical of a surface coated

with smooth paint, or the surface of a ship sheathed with

bright copper, the medium sand surface being typical of the

surface of a vessel sheathed with copper which has become

foul. If the surface has become fouled with large barnacles,

the resistance must rise very high.

In applying the results of these experiments to the case of

actual ships, it is usual to estimate the wetted surface, and to

take the length of the ship in the direction of motion to deter-

mine what the coefficient /shall be. For greater lengths than

50 feet, it is assumed that the resistance per square foot is the

same as for the plate 50 feet long.

Take the following as an example :

The wetted surface of a vessel is estimated at 7540 square feet, the

length being 172 feet. Find the resistance due to surface friction at a speed
of 12 knots, assuming a coefficient of 0^25, and that the resistance varies

(a) as the square of the speed, and (l>) as the i'83 power of the speed.

(a) Resistance = 0-25 X 7540 X ($)*
= 7540 Ibs.

(6) Resistance = 0-25 X 7540 X (-'g')

1
'

83

= 6702 Ibs.
1

1 This has to be obtained by the aid of logarithms.

log (2
1

' 83
)
= I '83 log 2
= 0-5508849

,'. *'" = 3-5554
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It is worth remembering that for a smooth painted surface

the frictional resistance per square foot of surface is about ^ Ib.

at a speed of 6 knots.

It is useful, in estimating the wetted surface for use in the

above formula, to have some method of readily approximating

to its value. Several methods of doing this have been already

given in Chapter II., the one known as
" Kirk's Analysis

"

having been largely employed. There are also several approxi-

mate formulae which are reproduced

(1) Based on Kirk's analysis

V
Surface = 2LD + yc

(2) Given by Mr. Denny

V
Surface = ryLD -f

(3) Given by Mr. Taylor

Surface =15-6

L being the length of the ship in feet
;

D being the mean moulded draught ;

V being the displacement in cubic feet ;

W being the displacement in tons.

There is also given, in Chapter II., a formula for the mean

wetted girth, and this multiplied by the length will give the

wetted surface. The formula is as follows :

Mean wetted girth = 0*95 cM. + 2(1 <r)D

where c = prismatic coefficient of fineness
;

M = wetted girth on the midship section ;

D = mean moulded draught.

2. Eddy-making Resistance, We have already seen the

general character of this form of resistance. It may be

assumed to vary as the square of the speed, but it will vary

in amount according to the shape of the ship and the appen-

dages. Thus a ship with a full stern and thick stern-posts

will experience this form of resistance to a much greater
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extent than a vessel with a fine stern and with stern-post and
rudder of moderate thickness. Eddy-making resistance can

be allowed for by putting on a percentage to the frictional

resistance. Mr. Froude estimated that in well-formed ships
this form of resistance

usuallyamounted to about

8 per cent, of the frictional

resistance. It is possible

to reduce eddy-making to

a minimum by paying
careful attention to the

FIG.

appendages and endings
of a vessel. Thus shaft brackets in twin-screw ships are often

made of pear-shaped section, as shown in Fig. 98.

3. Resistance due to the Formation of Waves. A completely

submerged body moving at any given speed will only experi-

ence resistance due to surface friction and eddy-making provided
it is immersed sufficiently ;

but with a body moving at the

DIRECTION OF FLOW.-

FIG. 99.

surface, such as we have to deal with, the resistance due to

the formation of waves becomes very important, especially at

high speeds. This subject is of considerable difficulty, and

it is not possible to give in this work more than a general

outline of the principles involved.

Consider a body shaped as in Fig. 99 placed a long way
below the surface in water (regarded as frictionless), and

Q
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suppose the water is made to move past the body with a uniform

speed V. The particles of water must move past the body in

certain lines, which are termed stream-lines. These stream-

lines are straight and parallel before they reach the body, but

owing to the obstruction caused, the particles of water are

locally diverted, and follow curved paths instead of straight

ones. The straight paths are again resumed some distance at

the rear of the body. We can imagine these stream-lines

making up the boundaries of a series of stream-tubes, in each

of which the same particles of water will flow throughout the

operation. Now, as these streams approach the body they

broaden, and consequently the particles of water slacken in

speed. Abreast the body the streams are constricted in area,

and there is a consequent increase in speed ;
and at the rear of

the body the streams again broaden, with a slackening in speed.

Now, in water flowing in the way described, any increase in

speed is accompanied by a decrease in pressure, and conversely

any decrease in speed is accompanied by an increase in pressure.

We may therefore say

(1) There is a broadening of all the streams, and attendant

decrease of speed and consequent excess of pressure, near both

ends of the body ;
and

(2) There is a narrowing of the streams, with attendant

excess of speed and consequent decrease of pressure, along the

middle of the body.
This relation between the velocity and pressure is seen in

the draught of a fire under a chimney when there is a strong wind

blowing. The excess of the speed of the wind is accompanied

by a decrease of pressure at the top of the chimney. It

should be noticed that the variations of velocity and pressure

must necessarily become less as we go further away from the

side of the body. A long way off the stream-lines would be

parallel. The body situated as shown, with the frictionless

water moving past it, does not experience any resultant force

tending to move it in the direction of motion. 1

1 This principle can be demonstrated by the use of advanced mathematics.
" We may say it is quite evident if the body is symmetrical, that is to say,
has both ends alike, for in that case all the fluid action about the after
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Now we have to pass from this hypothetical case to the case

of a vessel on the surface of the water. In this case the water

surface is free, and the excess of pressure at the bow and stern

shows itself by an elevation of the water at the bow and stern,

and the decrease of pressure along the sides shows itself by a

depression of the water along the sides. This system is shown

by the dotted profile of the water surface in Fig. 100. The

FIG. ioo.

foregoing gives us the reason for the wave-crest at the stern of

the ship. The crest at the bow appears quite a reasonable

thing to expect, but the crest at the stern is due to the same set

of causes. In actual practice the waves that are formed ob-

scure the simple system we have described above, which has

been termed the
"
statical wave."

Observation shows that there are two separate and distinct

series of waves caused by the motion of a ship through the

water

(1) Waves caused by the bow;

(2) Waves caused by the excess pressure at the stern due to

the expansion of the streams.

Each of these series of waves consists of (i) a series of

diverging waves, the crests of which slope aft, and (2) a series

of transverse waves, whose crests are nearly perpendicular to

the middle line of the ship.

First, as to the diverging waves at the bow. " The inevi-

tably widening form of the ship at her entrance throws off on

each side a local oblique wave of greater or less size accord-

ing to the speed and obtuseness of the wedge, and these waves

form themselves into a series of diverging crests. These waves

body must be the precise counterpart of that about the fore body ; all the

stream -lines, directions, speed of flow,,and pressures at every point must be

symmetrical, as is the body itself, and all the forces must be equal and

opposite" (see a paper by Mr. R. E. Froude, on "Ship Resistance," read

before the Greenock Philosophical Society in 1894).
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have peculiar properties. They retain their identical size for a

very great distance, with but little reduction in magnitude.

But the main point is, that they become at once disassociated

with the vessel, and after becoming fully formed at the bow,

they pass clear away into the distant water, and produce no

further effect on the vessel's resistance." These oblique waves

are not long in the line of the crest BZ, Fig. 101, and the

FIG. ioi.

waves travel perpendicular to the crest-line with a speed of

V cos 0, where V is the speed of the ship. As the speed of

the ship increases the diverging waves become larger, and con-

sequently represent a greater amount of resistance.

Besides these diverging waves, however,
" there is produced

by the motion of the vessel another notable series of waves,

which carry their crests transversely to her line of motion." It

is this transverse series of waves that becomes of the greatest

importance in producing resistance as the speed is pushed to

values which are high for the ship. These transverse waves

show themselves along the sides of the ship by the crests and

troughs, as indicated roughly in Fig. 100. The lengths of these

waves (i.e.
the distance from one crest to the other) bears a

definite relation to the speed of the ship. This relation is that

the length of the wave varies as the square of tJie speed at which

the ship is travelling, and thus as the speed of the ship increases

the length from crest to crest of the accompanying series of

transverse waves increases very rapidly.

The waves produced by the stern of the ship are not of

such great importance as those formed by the bow, which we

have been considering. They are, however, similar in character,

there being an oblique series and a transverse series.
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Interference between the Bow and Stern Transverse Series of

Waves. In a paper read by the late Mr. Froude at the Insti-

tution of Naval Architects in 1877, some very important

experiments were described, showing how the residuary resist-

ance * varied in a ship which always had the same fore and

after bodies, but had varying lengths of parallel middle body

inserted, thus varying the total length. A strange variation in

the resistance at the same speed, due to the varying lengths of

parallel middle body was observed. The results were set out

as roughly shown in Fig. 102, the resistance being set up on a

340 240 140. 40.

^^ LENGTH OF PARALLEL MIDDLE BODY

FIG. 102.

base of length of ship for certain constant speeds. At the low

speed of 9 knots very little variation was found, and this was

taken to show that at this speed the residuary resistance was

caused by the diverging waves only.

The curves show the following characteristics :

(1) The spacing or length of undulation appears uniform

throughout each curve, and this is explained by the fact that

waves of a given speed have always the same length.

(2) The spacing is more open in the curves of higher speed,

the length apparently varying as the square of the speed. This

is so because the length of the waves are proportionate to the

square of the speed.

1

Residuary resistance is the resistance other than frictional.
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(3) The amplitude or heights of the undulations are

greater in the curves of higher speeds, and this is so, because

the waves made by the ship are larger for higher speeds.

(4) The amplitude in each curve diminishes as the length of

parallel middle body increases, because the wave system, by

diffusing transversely, loses its height.

These variations in residuary resistance for varying lengths

are attributed to the interference of the bow and stern trans-

verse series of waves. When the crests of the bow-wave series

coincide with the crests of the stern wave series, the residuary

resistance is at a maximum. When the crests of the bow-wave

series coincides with the trough of the stern-wave series, the

residuary resistance is at a minimum.

These experiments show very clearly that it is not possible

to construct a formula which shall give the resistance of a ship

at speeds when the wave-making resistance forms the important
feature. We must either compare with the known performances
of similar ships or models by using Froude's " law of compari-
son

"
(see p. 237).

The following extracts from a lecture 1
by Lord Kelvin (Sir

William Thomson) are of interest as giving the relative in-

fluence of frictional and wave-making resistance :

" For a ship A, 300 feet long, 31^ feet beam, and 2634 tons

displacement, a ship of the ocean mail-steamer type, going at

13 knots, the skin resistance is 5*8 tons, and the wave resistance

is 3*2 tons, making a total of 9 tons. At 14 knots the skin

resistance is but little increased, viz. 6'6 tons, while the wave

resistance is 6*15 tons.
" For a vessel B, 300 feet long, 46*3 feet beam, and

3626 tons, no parallel middle body, with fine lines swelling out

gradually, the wave resistance is much more favourable. At

13 knots the skin resistance is rather more than A, being

6'95 tons as against 5*8 tons, while the wave resistance is

only 2'45 tons as against 3*2 tons. At 14 knots there is a

very remarkable result in the broader ship with its fine lines,

all entrance and run, and no parallel middle body. At 14

knots the skin resistance is 8 tons as against 6 - 6 tons in A,
1 Third volume "

Popular Lectures and Addresses," 1887.
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while the wave resistance is only 3' 15 tons as against 6 '15

tons in A.
" For a torpedo boat, 125 feet long and 51 tons displacement,

at 20 knots the skin resistance was i'2 tons, and the wave resist-

ance r*i tons."

Resistance of a Completely Submerged Body. The condi-

tions in this case are completely different from those which

have to be considered in the case of a vessel moving on the

surface. In this latter case waves are produced on the surface,

as we have seen, but with a completely submerged body this is

not so, provided the vessel is immersed sufficiently. We get the

clue to the form of least resistance in the shape of fishes, in which

the head or forward end is comparatively blunt, while the rear

portion tapers off very fine. The reason for the small resistances

of forms of this sort is seen when we consider the paths the particles

of water follow when flowing past. These paths are termed the

stream-lines for the particular form. It will be seen that no eddies

are produced for a fish-shaped form, and, as we saw on p. 225,

it is the rear end which must be fined off in order to reduce eddy-

making to a minimum. This was always insisted on very strongly

by the late Mr. Froude, who said,
"

It is blunt tails rather than

blunt noses that cause eddies." A very good illustration of the

above is seen in the form that is given to the section of shaft

brackets in twin-screw vessels. Such a section is given in Fig.

98. It will be noticed that the forward end is comparatively

blunt, while the after end is fined off to a small radius.

Speed Coefficients. The method which is most largely

employed for determining the I.H.P. required to drive a vessel

at a certain speed is by using coefficients obtained from the

results of trials of existing vessels. They are based upon

assumptions which should always be carefully borne in mind
when applying them in actual practice.

i. Displacement Coefficient. We have seen that for speeds
at which wave-making resistance is not experienced, the resist-

ance may be taken as varying

(a) With the area of wetted surface
;

(b) As the square of the speed ;

so that we may write for the resistance in pounds
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R = KiSV2

V being the speed in knots, S the area of wetted surface in

square feet, and K t being a coefficient depending on a number

of conditions which we have already discussed in dealing with

resistance.

___ R X V x IDT
Now, E.H.P =

,
as we have already seen

33000

(p. 215). Therefore we may say

E.H.P.= K2SV3

where K2 is another coefficient, which may be readily obtained

from the previous one. If now we assume that the total I.H.P.

bears a constant ratio to the E.H.P., or, in other words, the

propulsive coefficient remains the same, we may write

I.H.P.=KSV3

K
;i being another new coefficient. S, the area of the wetted

surface, is proportional to the product of the length and girth to

the water-line
; W, the displacement, is proportional to the pro-

duct of the length, breadth, and draught. Thus W may be said

to be proportional to the cube of the linear dimensions, while S

is proportional to the square of the linear dimensions. Take a

vessel A, of twice the length, breadth, and draught, of another

vessel B, with every linear dimension twice that of the corre-

sponding measurement in B. Then the forms of the two vessels

are precisely similar, and the area of the wetted surface of

A will be 2
2 = 4 times the area of the wetted surface of B, and

the displacement of A will be 2
s = 8 times the displacement of

B. The ratio of the linear dimensions will be the cube root

of the ratio of the displacements, in the above case ^8 = 2.

The ratio of corresponding areas will be the square of the cube

root of the ratio of the displacements, in the above case

(^/8)
2 = 4. This may also be written 8*. We may accord-

ingly say that for similar ships the area of the wetted surface

will be proportional to the two-thirds power of the displace-

ment, or W 3
. We can now write our formula for the indicated

horse-power
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W* x Vs

T TT p _
~C~

where W = the displacement in tons ;

V = the speed in knots ;

C = a coefficient termed the displacement coefficient^

If a ship is tried on the measured mile at a known displace-

ment, and the I.H.P. and speed are measured, the value of the

W~* X V3

coefficient C can be determined, for C = T TJ-^ . It is usual
l.rl.Jr.

to calculate this coefficient for every ship that goes on trial, and

to record it for future reference, together with all the particulars

of the ship and the conditions under which she was tried. It

is a very tedious calculation to work out the term W1

,
which

means that the square of the displacement in tons is calculated,

and the cube root of the result found. It is usual to perform
the work by the aid of logarithms. A specimen calculation is

given here :

The Himalaya on trial displaced 4375 tons, and an I.H.P.

of 2338 was recorded, giving a speed of 12*93 knots. Find the
"
displacement coefficient

"
of speed.

Here we have- W= 4375
V = 12-93

I.H.P.= 2338

By reference to a table of logarithms, we find

!og 4375 = 3' 64io

log 12-93 = i'in6

log 2338 = 3-3689

so that log (4375)* = I !og 4375 = 2-4273

log (i2'93)
3 = 3 log 12-93 = 3'3348

-
3-3689

= 2-3932
The number of whjch this is the logarithm is 247-3,

accordingly this is the value of the coefficient required.
1 The coefficients are often termed "Admiralty constants," but it will

be seen on p. 235 that they are not at all constant for different speeds of the

same vessel.
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2. The other coefficient employed is the ''midship-section

coefficient''
1 1

If M is the area of the immersed midship section

in square feet, the value of this coefficient is

M^X V
s

I.H.P.

This was originally based on the assumption that the

resistance of the ship might be regarded as due to the forcing

away of a volume of water whose section is that of the im-

mersed midship section of the ship. This assumption is not

compatible with the modern theories of resistance of ships, and

the formula can only be true in so far as the immersed midship
section is proportional to the wetted surface.

In obtaining the W5
coefficient, we have assumed that the

wetted surface of the ships we are comparing will vary as the

two-thirds power of the displacement ;
but this will not be true

if the ships are not similar in all respects. However, it is

found that the proportion to the area of the wetted surface is

much more nearly obtained by using W 3
than by using the

area of the immersed midship section. We can easily imagine
two ships of the same breadth and mean draught and similar

form of midship section whose displacement and area of

wetted surface are very different, owing to different lengths.

We therefore see that, in applying these formulae, we must take

care that the forms and proportions of the ships are at any rate

somewhat similar. There is one other point about these

formulas, and that is, that the performances of two ships can

only be fairly compared at
"
corresponding speeds."

2

Summing up the conditions under which these two formulas

should be employed, we have

(1) The resistance is proportional to the square of the speed.

(2) The resistance is proportional to the area of wetted

surface, and this area is assumed to vary as the two-thirds power
of the displacement, or as the area of the immersed midship
section. Consequently, the ships we compare should be of

somewhat similar type and form.

(3) The coefficient of performance of the machinery is

1 See note on p. 233.
a See p. 236.
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assumed to be the same. The ships we compare are supposed
to be fitted with the same type of engine, working with the

same efficiency. Accordingly we cannot fairly compare a

screw steamer with a paddle steamer, since the efficiency of

working may be very different.

(4) The conditions of the surfaces must be the same in

the two ships. It is evident that a greater I.H.P. would be

required for a given speed if the ship's bottom were foul than

if it had been newly painted, and consequently the coefficient

would have smaller values.

(5) Strictly speaking, the coefficients should only be com-

pared for
"
corresponding speeds."

1

With proper care these formulae may be made to give

valuable assistance in determining power or speed for a new

design, but they must be carefully used, and their limitations

thoroughly appreciated.

We have seen that it is only for moderate speeds that the

resistance can be said to be proportional to the square of the

speed, the resistance varying at a higher power as the speed
increases. Also that the propulsive coefficient is higher at the

maximum speed than at the lower speeds. So if we try a

vessel at various speeds, we cannot expect the speed coefficients

to remain constant, because the suppositions on which they are

based are not fulfilled at all speeds. This is found to be the

case, as is seen by the following particulars of the trials of the

Iris. The displacement being 3290 tons, the measured-mile

trials gave the following results :

I.H.P. Speed in knots.

7556 18-6

3958 1575
1765 I2'5

596 8-3

The values of the speed coefficients calculated from the

above are

i8-6
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It will be noticed that both these coefficients attain their

maximum values at about 12 knots for this ship, their value

being less for higher and lower speeds. We may explain this

by pointing out

(1) At high speeds, although the "propulsive coefficient"

is high, yet the resistance varies at a greater rate than the

square of the speed, and

(2) At low speeds, although the resistance varies nearly as

the square of the speed, yet the efficiency of the mechanism is

not at its highest value.

Corresponding Speeds. We have frequently had to use

the terms "low speeds" and "high speeds" as applied to certain

ships, but these terms are strictly relative. What would be a

high speed for one vessel might very well be a low speed for

another. The first general idea that we have is that the speed

depends in some way on the length. Fifteen knots would be

a high speed for a ship 150 feet long, but it would be quite a

moderate speed for a ship 500 feet long. In trying a model

of a ship in order to determine its resistance, it is obvious- that

we cannot run the model at the same speed as the ship ;
but

there must be a speed of the model tt

corresponding" to the

speed of the ship. The law that we must employ is as follows :

"/ comparing similar ships with one another, or ships with

models, the speeds must beproportional to the square root of their

linear dimensions" Thus, suppose a ship is 300 feet long, and

has to be driven at a speed of 20 knots ; we make a model of

this ship which is 6' 3" long. Then the ratio of their linear

dimensions is

f=48
6-25

and the speed of the model corresponding to 20 knots of the

ship is

20 -f- ,/48 = 2-88 knots

Speeds obtained in this way are termed "
corresponding speeds"

Example. A model of a ship of 2000 tons displacement is constructed
on the \ inch = i foot scale, and is towed at a speed of 3 knots. What
speed of the ship does this correspond to ?
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Although here the actual dimensions are not given, yet the ratio of the

linear dimensions is given, viz. I :48. Therefore the speed of the ship

corresponding to 3 knots of the model is

3 /y/48 = 2o knots

Expressing this law in a formula, we may say

where V = speed in knots
;

L = the length in feet ;

r = a coefficient expressing the ratio V:VL> and

consequently giving a measure of the speed.

We may take the following as average values of the co-

efficient
"
c
"

in full-sized ships :

When c = 0*5 to 0*65, the ship is being driven at a

moderate economical speed;
c = 0*7 to 1*0, gives the speed of mail steamers and

modern battleships ;

c = i'o to i '3, gives the speed of cruisers.

Beyond this we cannot go in full-sized vessels, since it is

not possible to get in enough engine-power. This can, how-

ever, be done in torpedo-boats and torpedo-boat destroyers,

and here we have c = 1*9 to 2*3. These may be termed

excessive speeds.

We have already seen that the W* coefficient of perform-

ance has a maximum value at a certain speed for a given ship.

In the case of the Iris, we saw that this was at a speed of

1 2 knots. This maximum value of the coefficient is usually

found to be obtained in full-sized ships at a speed correspond-

ing to the value c = 07. The Iris was 300 feet long, and the

12
value of c at 12 knots would be .= 0*09.

V3
Proude's Law of Comparison. This law enables us

to compare the resistance of a ship with that of her model, or

the resistances of two. ships of different size but of the same
form. It is as follows :

If the linear dimensions of a vessel be I times the dimensions

of the model, and the resistance of the latter at speeds V,, V2,
Vs ,
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etc., are R^ Ra, R3 , etc., then at the
"
corresponding speeds

"
of

the ship, V^/, V2 -v//, V3 \//, etc.
y
the resistance of the ship will

be R,/
3
, R/, Rj/

3
,
etc.

In passing from a model to a full-sized ship there is a

correction to be made, because of the different effect of the

friction of the water on the longer surface. The law of com-

parison strictly applies to the resistances other than frictional.

The law can be used in comparing the resistance of two

ships of similar form, and is found of great value when model

experiments are not available.

In the earlier portion of this chapter we referred to the

experiments of the Greyhound by the late Mr. Froude. A
curve of resistance of the ship in pounds on a base of speed
is given by A, in Fig. 96. In connection with these experi-

ments, a model of the Greyhound was made and tried in the

experimental tank under similar conditions of draught as the

ship, and between speeds corresponding to those at which the

ship herself had been towed. The resistance of the model having
been found at a number of speeds, it was possible to construct

a curve of resistance on a base of speed as shown by C in

Fig. 103. The scale of the model was -^ full size, and

therefore the corresponding speeds of the ship were V 1 ^, or

four times the speed of the model. If the law of comparison
held good for the total resistance, the resistance of the ship

should have been i63 = 4096 times the resistance of the model

at corresponding speeds; but this was not the case, owing to

the different effect of surface friction on the long and short

surfaces. The necessary correction was made as follows :

The wetted surface of the model was calculated, and by

employing a coefficient suitable to the length of the model and

the condition of its surface, the resistance due to surface

friction was calculated for various speeds as explained (p. 223),

and a curve drawn through all the spots thus obtained. This

is shown by the dotted curve DD in Fig. 103. Thus at

250 feet per minute the total resistance of the model is given

by ac, and the resistance due to surface friction by ad. The

portion of the ordinate between the curves CC and DD will

give at any speed the resistance due to other causes than that
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of surface friction. Thus at 250 feet per minute, these other

resistances are given by cd. This figure shows very clearly

how the resistance at low speeds is almost wholly due to

surface friction, and this forms at high speeds a large propor-

tion of the total. The wave-making resistance, as we have

already seen, is the chief cause of the difference between the

SPEED

FIG. 103.

curves CC and DD, which difference becomes greater as the

speed increases. It is the resistance, other than frictional, to

which the law of comparison is intended to apply.

We have in Fig. 96 the curve of resistance, AA, of the

Greyhound on a base of speed, and in precisely the same way
as for the model a curve of frictional resistance was drawn in for

the ship, taking the coefficient proper for the state of the surface

of the ship and its length. Such a curve is given by BB, Fig.g6.

Then it was found that the ordinates between the curves AA
and BB, Fig. 96, giving .the resistance for the ship other than

frictional, were in practical agreement with the ordinates

between the curves CC and DD, Fig. 103, giving the resistance

of the model other than frictional, allowing for the '''law of
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comparison" above stated. That is, at speeds of the ship

or four times the speeds of the model, the resistance of the ship

other than frictional was practically i63

,
or 4096 times the

resistance of the model.

These experiments of the Greyhound and her model form

the first experimental verification of the law of comparison.

In 1883 some towing trials were made on a torpedo-boat

by Mr. Yarrow, and a model of the boat was tried at the

experimental tank belonging to the British Admiralty. In this

case also there was virtual agreement between the boat and

the model according to the law of comparison. It is now the

practice of the British Admiralty and others to have models

made and run in a tank. The data obtained are of great

value in determining the power and speed of new designs.

For further particulars the student is referred to tbe sources

of information mentioned at the end of the book.

Having the resistance of a ship at any given speed, we can

at once determine the E.H.P. at that speed (see p. 215), and

then by using a suitable propulsive coefficient, we may deter-

mine the I.H.P. at that speed. Thus, if at 10 knots the resist-

ance of a ship is 10,700 Ibs., we can obtain the E.H.P. as

follows :

Speed in feet per minute = i o x --g-f-

Work done per minute = 10,700 X (10 X ^-f-fr-) foot-lbs.

E H P = I07 x ^~
33000

= 328

and if we assume a propulsive coefficient of 45 per cent.

L H.P. = 3*AX '

45
= 729

By the use of the law of comparison, we can pass from one

ship whose trials have been recorded to another ship of the

same form, whose I.H.P at a certain speed is required. It is

found very useful when data as to I.H.P. and speed of existing
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ships are available. In using the law we make the following

assumptions, which are all reasonable ones to make.

(1) The correction for surface friction in passing from one

ship to another of different length is unnecessary.

(2) The condition of the surfaces of the two vessels are

assumed to be the same.

(3) The efficiency of the machinery, propellers, etc., is

assumed the same in both cases, so that we can use I.H.P.

instead of E.H.P.

The method of using the law will be best illustrated by the

following example :

A vessel of 3290 tons has an I.H.P. of 2500 on trial at 14 knots. What
would be the probable I.H.P. of a vessel of the same form, but of three

times the displacement, at the corresponding speed ?

The ratio of the displacement = 3

.*. the ratio of the linear dimensions / = jJ/3
= 1-44 _

.'. the corresponding speed = 14 X \ i '44
= 16 '8 knots

The resistance of the new ship will be P times that of the original, and

accordingly the E.H.P., and therefore the I.H.P., will be that of the
7 7

original ship multiplied by fi = (1*44)' = 3*6, and

I.H.P. for new ship = 2500 X 3'6
= 9000

When ships have been run on the measured mile at pro-

gressive speeds, the information obtained is found to be ex-

tremely valuable, since we can draw for the ship thus tried a

curve of I.H.P. on a base of speed, and thus at intermediate

speeds we can determine the I.H.P. necessary. The following

example will show how such a curve is found useful in

estimating I.H.P. for a new design.

A vessel of 9000 tons is being designed, and it is desired to obtain a

speed of 21 knots. A ship of 7390 tons of similar form has been tried, and
a curve of I.H.P. to a base of speed drawn. At speeds of 10, 14, 18, and
20 knots the I.H.P. is 1000, 3000, 7500, 11,000 respectively.

Now, the corresponding speeds of the ships will vary as the square root

of the ratio of linear dimension /.

We have
73 _ 9000*~ 73$S

and / = 1-07

V/"= 1-035
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therefore the corresponding speed of the 7390-ton ship is

21 -i- 1-035 = 20-3

By drawing in the curve of I.H.P. and continuing it beyond the 20

knots, we find that the I.H.P. corresponding to a speed of 20-3 knots is

about 11,700. The I.H.P. for the gooo-ton ship at 21 knots is accordingly

11,700 X /2 = 11,700 X l'26
= 14,750 I.H.P. about

EXAMPLES TO CHAPTER VII.

1 . The Greyhound was towed at the rate of 845 feet per minute, and
the horizontal strain on the tow-rope, including an estimate of the air

resistance of masts and rigging, was 6200 Ibs. Find the effective horse-

power at that speed.
Ans. 159 E.H.P. nearly.

2. A vessel of 55 tons displacement is being towed at a speed of 8

knots, and her resistance at that speed is estimated at 18,740 Ibs. What
horse-power is being transmitted through the tow-rope ?

Ans. 460.

3. A steam-yacht has the following particulars given :

Displacement on trial ... ... ... ... 176-5 tons

I.H.P on trial 364
Speed ,, ... ... ... ... ... 13-3 knots

Find the "displacement coefficient of speed."
Ans. 203.

4. A steam-yacht has a displacement of 143-5 tons, and 250 I.H.P. is

expected on trial. What should the speed in knots be, assuming a displace-
ment coefficient of speed of 196 ?

Ans. I2'2 knots.

5. The Warrior developed 5267 indicated horse-power, with a speed of

14-08 knots on a displacement of 9231 tons. Find the displacement co-

efficient of speed.
Ans. 233.

6. In a set of progressive speed trials, very different values of the

"displacement coefficient
" are obtained at different speeds. Explain the

reason of this. A ship is 225 feet long, at what speed would you expect
the coefficient to have its maximum value ?

Aiis. About loj knots.

7. Suppose we took a torpedo boat destroyer of 250 tons displacement
and 27 knots speed as a model, and designed a vessel of 10,000 tons dis-

placement of similar form. At what speed of this vessel could we compare
her resistance with that of the model at 27 knots ?

Ans. 50 knots.

8. A ship of 5000 tons displacement has to be driven at 21 knots. A
model of the ship displaces 101 Ibs. At what speed should it be tried ?

Ans. 3 knots.

9. A ship of 5000 tons displacement is driven at a speed of 12 knots.

A ship of 6500 tons of similar form is being designed. At what speed of

the larger ship can we compare its performance with the 5ooo-ton ship ?

Ans. 12-53 knots.

10. A vessel 300 feet long is driven at a speed of 15 knots. At what
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speed must a similar vessel 350 feet long be driven in order that their

performances may be compared ?

A us. j.6'2 knots.

11. A vessel 300 feet long has a displacement on the measured-mile
trial of 3330 tons, and steams at 14, 18, and 20 knots with 2400, 6000, and

9000 I.H.P. respectively. What would be the I.H.P. required to drive a

vessel of similar type, but of double the displacement, at 20 knots ?

Ans. 13,000 I.H.P. about.

12. A vessel of 3100 tons displacement is 270 feet long, 42 feet beam,
and 17 feet draught. Her I.H.P. at speeds of 6, 9, 12, and 15 knots are

270, 600, 1 350, and 3060 respectively. What will be the dimensions of a

similar vessel of 7000 tons displacement, and what I.H.P. will be required
to drive this vessel at 18 knots ?

Ans. 354 X 55 X 22-3 , about 9600 I.H.P.

13. A vessel of 447 tons displacement is tried on the measured mile at

progressive speeds, with the following results :

Speed. I.H.P.

8-47 485
10-43 881

12-23 1573
12-93 2I I7

A vessel of similar form of 5600 tons displacement is being designed.
Estimate the I.H.P. required for a speed of 13 knots.

Ans. 2290 I.H.P.
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Proof of Simpson's First Rule. Let the equation of the curve

referred to the axes Ox, Oy, as Fig. 31, p. 51, be

y =

a
,
a

lt
a

2 being constants ; then the area of a narrow strip length y
and breadth AX is

y x AX

and the area required between x = o and x = 2h is the sum of all

such strips between these limits. Considering the strips as being a

small breadth Ax, we still do not take account of the small triangular

pieces as BDE (see Fig. 12), but on proceeding to the limit, i.e.

making the strips indefinitely narrow, these triangular areas dis-

appear, and the expression for the area becomes, using the formula;

of the calculus

y . dx
o

or, putting in the value fory given by the equation to the curve

'zh

(a + a
t
x + a.2x-}dx

o

which equals

which has to be evaluated between the limits x = ih and x =

The expression then becomes

a 2/t + ^4^ + $a*8/i
3

Now, from the equation to the curve, when

x = o,y = a

x =
//, y = a + aji + aji-

x -
2/t, y = a + 2aJi + \tiji-
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But calling the ordinates in the ordinary way, y lt y.2,
and ys

when x o,y = y l

x -
h,y =

}',

x =
-zk, y =

j>3

therefore we have

<*&=?!
a

t) + aji + a.
2
h* = y.,

<? + 2aji + 4a.2h- = y~

from which may be obtained the following values for the constants

or substituting above

Area = y-flh + -- A(4J2
-

3Xi
-

>'s) + - '

^O's
- 2A> -i

which is the expression known as Simpson's First Rule.

Proof of Simpson's Second Rule. Let the equation to the

curve be

then the area will be given by

(a + a^x + a.?*- + azx?)dx (i)

J o

The area given by the rule is

From (i) we find that the area is

A2
, , 81 n

3o/! + 9^1 + 9 2 + 4 <h'1 (3)

Now
y\ - ao

These are four equations for determining <z
, </,,

a.a a3 .

If we substitute the values given above forj15 y. etc., in the
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expression for the area as given by Simpson's second rule in (2), we
find the result is the same as the expression (3). This shows that

Simpson's second rule will correctly integrate a curve whose

equation is that given above.

The truth of the five-eight rule given on p. 12 can be proved in a

similar manner.

The dynamical stability of a ship at any given angle of

heel is equal to the area of the curve of statical stability up
to that angle.

Referring to Fig. 67 showing a ship heeled over to a certain

angle 0, imagine the vessel still further heeled through a very small

additional angle, which we may call de. The centre of buoyancy
will move to B" (the student should here draw his own figure to

follow the argument). B'B" will be parallel to the water-line W'L',
and consequently the centre of buoyancy will not change level

during the small inclination. Drawing a vertical B"Z through

B", we draw GZ', the new righting arm, perpendicular to it. Now,
the angle ZGZ' = do, and the vertical separation of Z and Z' =
GZ x df). Therefore the work done in inclining the ship from the

angle 9 to the angle 9 + do is

Wx
Take now the curve of statical stability for this vessel. At the

angle the ordinate isW x GZ. Take a consecutive ordinate at the

angle + de. Then the area of such a strip
= W x GZ x do ; but

this is the same as the above expression for the work done in

inclining the vessel through the angle de, and this, being true for

any small angle de, is true for all the small angles up to the angle 0.

But the addition of the work done for each successive increment of

inclination up to a given angle is the dynamical stability at that

angle, and the sum of the areas of such strips of the curve of

statical stability as we have dealt with above is the area of that

curve up to the angle 0. Therefore we have the dynamical stability

of a ship at any given angle of heel is equal to the area of the

curve of statical stability up to that angle, where the ordinates of

this curve represent the righting moments.
The area of a curve of displacement divided by the load

displacement gives the distance of the centre of buoyancy
below the L.W.L.

Let OBL, Fig. 104, be the curve of displacement of a vessel

constructed in the ordinary way, OW being the load mean

draught, and WL being the load displacement.
Take two level lines, AB, A'B', a small distance &z apart.
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Call the area of the water-plane at the level of AB, A square feet,

and the distance of this water-plane below the L.W.L., z. The
volume between the water-lines AB, A'B' will be A x AST, or, sup-

C'C.

FIG. 104.

posing they are indefinitely close together, A x ds. The moment
of this layer about the L.W.L. will be A. z. dz.

The difference between the lengths of A'B' and AB will evidently
be the weight of the volume of water between those two level lines,

A. x dz
or . Draw B'C', BC vertically as shown. Then the breadth

A x dz . A x z x ds.
of the strip B'C is

,
and the area of this strip is

35
The area of the curve will be the area of all such strips, or

fA . a . dz

35

The moment of the volume of displacement about the L.W.L.

is given by

and the distance of the C.B. below the L.W.L. is found by dividing

this moment by the load displacement in cubic feet, or

[A.x.ds

J WL x 35

The area of the curve divided by the load displacement in tons is

/"A . s . dz

35

which is the same thing.

WL
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Normand's Approximate Formula for the Position of the

Centre of Buoyancy. This formula was given on p. 63.

-T- is known as " Rankine's mean depth," and we may for con-
A

venience say
V = D

The formula then becomes

Distance of CB below)

the LWL in feet )

In Fig. 105, let ABC be the curve of water-plane areas, DC
being the mean draught d. Draw the rectangle AFCD. Make DE

A. D.

E.

FIG. 105.

= D. Draw EG parallel to DA, cutting the diagonal FD in H.
Finish the figure as indicated. The assumption made is that the

C.G. of the area DABC, which will give the vertical position of

the centre of buoyancy, is in the same position as the C.G. of the

area DAHC. This is seen, on inspection, to be very nearly the

case. These two figures have the same area, as we now proceed
to show.

By using the principle of similar triangles, we have

AF GF _ ED
AD GH

~
HE

and therefore

GF x HE = ED x GH
or EC x HE = AG x GH
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or the triangles AGH, HEC are equal in area
; therefore

Area AHCD = area AGED
and this latter area equals the volume of displacement, being a

rectangle having its adjacent sides equal to A and respectively.A
The area of the curved figure DABC also evidently represents

the volume of displacement. Therefore the figures DABC and

DAHC are equal in area.

We now have to determine the position of the C.G. of DAHC
in relation to the L.W.L.

Area AGH _ \ x AG x GH _ i GH
area AGED

~
AG x AD

~
2

'

AD
d ~ D

or the triangle AGH = (
~~^~ )

x rectangle AGED

We may regard the figure DAHC as made by taking AGH away
from the rectangle AE, and putting it in the position HEC. The

shift of its C.G. downwards during this operation is -, there-

fore the C.G. of the whole figure will shift downwards, using the

principle explained in p. 96, an amount equal to x say, x being given

by-
AGED x x = AGH x -

3

or putting in the value found above, for the triangle AGH
- DW i.

The C.G. of AGED is at present a distance below the L.W.L. ;
2

therefore the C.G. ofDAHC is below the L.W.L. a distance

and taking the assumption given above, this is the distance of the

C.B. below the L.W.L. very nearly.

Strength of Rudder-heads. For vessels built to Lloyd's rules,

the diameter of the rudder-head is determined by the longitudinal

number (see p. 194) and is given in the tables. For steam-vessels
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the diameters of rudder-heads are calculated by the following

formula _
d = jjVX/D x B* x S2

where D = feet draught, B = breadth of rudder in inches, and

S = speed in knots
;
but in no case is the diameter to be less than

that given in the table.

The following is the method adopted for determining the size of

rudder-head, having given particulars of size, speed of ship, and

maximum angle of rudder. To obtain the twisting moment acting
on the rudder, we must know (i) the pressure of the water on the

rudder
; (2) the position of the centre of effort of this pressure.

As regards (i), the pressure in pounds on a plane moving uni-

formly broadside on (see Fig. 106), by the formula

P = ri2Az/2

where A is the area of the plane in square feet
;

v is the velocity in feet per second.

FIG. 106. FIG. 107.

This supposes the rudder to be round to an angle of 90. For

an angle 0, the normal pressure is given by
P' = P x sin e (see Fig. 107)

With regard to the position on the rudder at which this normal

pressure may be regarded as acting, it is found that for values of

between 30 and 40, the centre of effort is about four-tenths the

breadth of the rudder from the leading edge, the rudder being

hinged at the fore side.

By this means we are able to determine the twisting moment on

the rudder-head. If a screw steamship is being propelled through
the water at a certain speed the sternward velocity of the water

from the propeller past the rudder, is greater than the speed of the

ship. The velocity of water past the rudder can be taken as 10

per cent, greater than the velocity of the ship. Take the following as

an example. A rectangular rudder 13 feet broad, hinged on the
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fore side, 180 square feet in area ;
maximum angle, 35; speed of

ship, 16 knots.

16 x 101
1 6 knots =-2

---- 2 7 f et Per second

Velocity of water past rudder = 27 + 27
= 297, say 30 feet per second

, 180 x 30 x 30 .

The pressure on the rudder = 1-12 x--- x sin 35

= 46^5 tons

Taking the centre of effort as r̂ x 13 = 5-2 feet, or 62^4 inches

from the leading edge

The twisting moment = 46'5 x 62^4
= 2901 inch-tons

To determine the size of rudder-head for a twisting moment of

T inch-tons, we use the following formula :

T =

where d = diameter in inches,

f strength of material per square inch, allowing a factor of

safety.

For wrought iron, f is taken as 4 tons

cast steel, / ,,5
phosphor bronze,/ 3

For a twisting moment of 2901 inch-tons, the diameter of a

rudder-head, if of wrought iron, will be given by

iV x 2
7
* x 4

or d = 15^ inches

Example. A rudder is 243^ square feet in area, and the centre of

pressure is estimated to be 6'i2 feet abaft the centre of rudder-head, at 35.
If the speed of the ship is 19 knots, estimate the diameter of the rudder-

head, taking the stress at 4 tons and 5 tons.

Ans. 20'l", 187."

Launching Calculations. Before starting on these calcula-

tions, it is necessary to estimate as closely as possible the launching

weight of the ship, and also the position of the centre of gravity,

both vertically and longitudinally. The case of the Daphne,
which capsized on the Clyde

1 on being launched, drew special

1 See Engineering, 1883, for a report on the Daphne, by Sir E. J.
Reed.
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attention to the necessity of providing sufficient stability in the

launching condition. A ship in the launching condition has a light

draught, great freeboard, and high position of the C.G. It is

possible, by the use of the principles we have discussed at length,

to approximate to the metacentric height, and if this is not con-

sidered sufficient, the ship should be ballasted to lower the centre

of gravity. It has been suggested that a minimum G.M. of I foot

should be provided in the launching condition. If the cross-curves

of stability of the vessel have been made, it is possible very quickly
to draw in the curve of stability in the launching condition, and in

case of any doubt as to the stability, this should be done.

FIG. 108.

We now have to consider the longitudinal stability of a vessel

as she goes down the ways, and describe the calculations that are

made to see if the vessel will
"
tip

" *
(i.e. the stern drops over the

end of the ways, and the forward end lifts up off the ways), and to

ascertain the pressure that comes on the fore poppets when the

vessel lifts. After the ship has run a certain distance (see Fig. 108)

*
Tipping is shown by the second diagram in Fig. 108.
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the C.G. will pass beyond the end of the ways, and will give rise to

a "
tipping moment ;

" but by this time a portion of the ship is in

the water, and the upward support of the buoyancy will give rise to

a moment in the opposite direction. Call W the weight of the

ship, and at the position shown in Fig. 108, let d be the distance of

the C.G. beyond the end of the ways, iv the support of the

buoyancy, and cf the distance of the centre of buoyancy beyond
the end of the ways. Then the support of the ways at this par-
ticular position of the ship's travel isW TV, and if the vessel tipped,
i.e. if the moment of the weight W x d were greater than the

moment of the buoyancy w x d
,
this upward support would all be

concentrated at the end of the ways, and very possibly the bottom
of the vessel would be forced in, or the end of the ways give way,
and so cause a stoppage of the ship, or at any rate make the ship
slide down the rest of the distance on her keel. If the vessel

stopped on the ways, she would be in a very critical condition as the

tide fell. We therefore see that at all points the moment of the

buoyancy should exceed the moment of the weight about the end

of the ways. In order to see if this is so, we proceed as follows :

Assume a height of tide that may safely be expected for launching,
and take a series of positions as the ship goes down the ways, and
determine the buoyancy and the distances of the C.G. and C.B.

from the end of the ways, viz. ?t>, d, and rf as above.

Then on a base-line (Fig. 109) representing the distance the ship
has travelled, we draw two curves : first, a curve AA, giving the

moment of buoyancy about the end of the ways ; and second, BB,

giving the moment of weight about the end of the ways (this latter

being a straight line, since the weight is constant). The distance

between these curves will give us the
" moment against tipping

"
at

any particular place, and the minimum distance between them gives

the margin of safety. If a curve of moment of buoyancy is obtained,
as the dotted curve A'A' crossing BB, then there would be a
"
tipping moment." This might be the case if the ways were not

long enough, or the tide might not rise so high as expected, or the

position of the centre of gravity might be wrongly estimated. The

remedy would be either to lengthen the ways or to place some
ballast right fonvard. Either of these would push the point G, at

which the centre of gravity of the ship comes over the end of the

ways, further along. Ships have been launched successfully which

had an adverse tipping moment ; but the velocity was very great,

and owing to this the ships were safely launched.

There is another point that has to be considered. As the ship

goes further down the ways, there comes a certain position in which
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the moment of the buoyancy about the fore poppet equals the

moment of the weight about the fore poppet. At this point the

stern of the ship will begin to lift ; and if W is the weight of

the ship, and W the buoyancy, the ship will be partially supported

by the fore poppets, and the amount of this support is W W.
Thus we have a great strain, coming both on the slip and on the

vessel, concentrated over a small distance. The amount of this

can be determined as follows : In a similar manner in which we

250. 200.

DISTANCE SHIP TRAVELS.

FIG. 109.

constructed the curves A and B we can construct E and F
;
E gives

the moment of the weight of the ship about the fore poppet, which

moment is a constant quantity, and F gives the moment of the

buoyancy about the fore poppet. E and F intersect at the point P
;

and this is the place where the moments of weight and buoyancy
are equal, and therefore the place where the stern will begin to lift.

Now construct also C and D, C being the weight of the ship, in

this case 6000 tons, and D being the buoyancy as the ship moves
down the ways. Then the intercept between these, at the distance

given by the point P, viz. aa, will give the weight borne by the fore

poppets when the stern begins to lift. In the case for which the

curves are given in Fig. 109, this weight was 675 tons. The launch-

ing curves for H.M.S. Sanspareil are given in Mr. Mackrow's
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" Pocket Book," and in that case the weight of the ship was 5746

tons, and the weight on the fore poppets 870 tons.

The internal shoring of the ship must be specially arranged
for in the neighbourhood of the fore poppets, and the portion
of the slip under them at the time the stern lifts must be made of

sufficient strength to bear the concentrated weight
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SYLLABUS OF THE EXAMINATIONS IN NAVAL
ARCHITECTURE CONDUCTED BY THE DE-

PARTMENT OF SCIENCE AND ART.

(From the Directory of the Department of Science and Art, by

permission of the Controller of Her Majesty's Stationery Office.)

FIRST STAGE OR ELEMENTARY COURSE.

Xo candidate will be permitted to pass who fails to obtain marks
in any one of the three sections of this stage.

I. PRACTICAL SHIPBUILDING. Students should be able to

describe the methods usually adopted by the workmen in forming
and combining the several parts of a steel or iron ship's hull, includ-

ing the transverse and longitudinal framing, stems and sternposts,
inner and outer bottom plating, beams, pillars (both fixed and

portable), deck plating and planking, and the wood and copper

sheathing of sheathed ships : also the methods adopted in forming
and combining the framing and bottom planking of wood and com-

posite ships. Also description of tools used in plating, planking,
and caulking ships.

II. SHIP CALCULATIONS. Fundamental conditions which must
be fulfilled by bodies when floating freely and at rest in still water.

Calculations relating to the computation of the areas of plane sur-

faces and the displacement of ships by applications of Simpson's
and the five-eight-minus-one (or one-twelfth) rules :

"
tons per inch

immersion
;

" and the sinkage of a vessel in passing from sea into

river water. Also a knowledge of the specific gravities of materials

used in shipbuilding, and simple calculations based thereon.

III. DRAWING. Students will be required to make sketches to

scale.

It is intended that the examination in Practical Shipbuilding
shall be one principally relating to steel and iron ships, but one or

s
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two questions may be set on the important parts of wood and

composite vessels mentioned above.

SECOND STAGE OR ADVANCED COURSE.

In addition to the subjects for the Elementary Stage, students

presenting themselves for examination in the Advanced Course will

be expected to have received instruction in the following

PRACTICAL SHIPBUILDING. The structural details of water-

tight bulkheads ; methods of testing water-tight work
;
the longi-

tudinal and transverse stresses to which ships are liable in still

water and amongst waves, and the structural arrangements which

give the necessary strength to resist those stresses : also the various

local stresses to which a ship is liable, and the special arrangements
worked to meet them ; the qualities of the various materials used in

shipbuilding, and the tests to which these materials are subjected ;

precautions to be observed when working steel plates and angles
hot ; effect of annealing.

LAYING OFF. Comprising a knowledge of the work carried on

in the Mould Loft and at the Scrive Board in connection with order-

ing materials and laying off the several parts of an iron or steel

mercantile vessel ;
also the similar work relating to warships, both

sheathed with wood and unsheathed.

SHIP CALCULATIONS. Curves of "
displacement

" and " tons

per inch immersion ;

"
definitions of centre of flotation and centre

of buoyancy ;
use of Simpson's and other rules for finding the

position of the centre of gravity of plane areas, and for calculating

the position of the centre of buoyancy ; graphic or geometrical
method of calculating displacement and position of centre of buoy-

ancy ;
definitions of the terms " metacentre " and " metacentric

height ;

"
rules for calculating positions of transverse and longitu-

dinal metacentres ; metacentric diagrams, their construction and

use ; tensile strength of material between widely and closely spaced
holes punched and drilled in steel plates ; shearing strength of iron

and steel rivets, and spacing of rivets ; strength of butt fastenings ;

more advanced weight calculations, such as those for the weight of

a deck or bulkhead.

HONOURS.

The examination in Honours will be divided into two parts,

which cannot both be taken in the same year, and no candidate who
has not been success/til in Part I. can be examined in Fart II. A
certificate or medal will only be given when a success in Part 1L

has been obtained.
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PART I.

In addition to the subjects prescribed for the preceding stages,

this examination will embrace questions upon some or all of the

subjects specified below :

PRACTICAL SHIPBUILDING. Important fittings of ships, inclu-

ding ventilating and coaling arrangements, anchor and capstan

gear, masts and mastwork, etc. ;
methods adopted for preventing

deterioration of hull, both when being built and whilst on service ;

launching arrangements ; principles of water-tight subdivision of

war and merchant ships.

SHIP CALCULATIONS. Definition of "change of trim;"
moment to change trim one inch ; change of trim due to moving

weights already on board, and that due to the addition or removal

of weights of moderate amount
; displacement sheet, general arrange-

ment of calculations usually made thereon
; approximate and

detailed calculations relating to the weight and position of centre of

gravity of hull
; inclining experiment made to ascertain position

of centre of gravity of a vessel and precautions necessary to be

observed to ensure accuracy ; calculations for strength of bottom

plating.

PART II.

Those candidates for Honours who successfully pass the above-

mentioned examination may sit for examination in the following

subjects, relating to the higher branches of Theoretical Naval

Architecture, including those enumerated below :

Proofs of Simpson's and the five-eight-minus-one rules.

Heeling produced by the pressure of wind on sails.

Calculation of the shearing forces and bending moments set up
in a ship in still water, and also when floating amongst waves.

Construction of equivalent girder.

Statical and dynamical stability : Atwood's and Moseley's

formulae, and methods of calculating stability based thereon. Ex-

perimental methods of obtaining the stability at any angle. Use
of Amsler's integrator for calculating stability. Ordinary curves of

stability ; their construction and uses. Cross-curves of stability.

Reech's method of obtaining the co-ordinates of the centre of

buoyancy corresponding to any given angle of heel.

Effect of free liquid in hold on stability; stability of petroleum-

carrying vessels.

Rate of inflow of water through hole in bottom, and calculation
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of alteration of trim and heel due to admission of water through

damage to bottom.

Construction of curves of buoyancy, curves of flotation, surfaces

of buoyancy, surfaces of flotation. The " metacentric "
or " locus of

pro-metacentres."

Radius of curvature f R =
J
at any point of the curve of buoy-

ancv, and Leclert's formula (r =
--y

or = R + \-,,-T } for radius of
\ a V a V /

curvature at any point of the curve of flotation.

Loss of initial stability due to grounding.

Launching curves made to ensure that the length of ground-

ways proposed is sufficient, etc.

Fronde's experiments on frictional resistance of water.

The resistances experienced by ships in their passage through
the water. Methods of calculating the indicated horse-power

required to drive a vessel at any given speed. Froude's law of
"
corresponding speeds." Effective horse-power. Propulsive co-

efficient
;
definition of, and values in typical ships.

Methods of measuring speed of ships on their trial trips ; pre-

cautions necessary to ensure accuracy. Progressive trials.

Calculations relating to the steering of ships. Methods of deter-

mining necessary size of rudder-head.

Time of complete oscillation (T = 2** / or = rio8 f-
)

V ^ Sm V MS
for a vessel rolling unresistedly in still water. Effect on time of

oscillation of raising or "
winging

"
weights. Curves of "

extinc-

tion "
(or

"
declining angles "). Causes operating to reduce the

amplitude of oscillation of a vessel set rolling in still water or

amongst waves. Usefulness of bilge keels ; formula for calculating
resistance due to bilge keels when vessel is rolling. Effect of syn-
chronism between motion of ship and that of waves amongst which

she is rolling. Definitions of "
effective wave-slope

" and "
virtual

upright." Methods of observing the rolling motions of ships.

Definitions of
"

stiff" and "
steady

"
vessel ; elements of design

affecting these qualities.

Methods of calculating wetted surfaces.

The vibration of steamships : how caused, and methods of

minimizing.
Those candidates who answer the questions in the written

papers in a sufficiently satisfactory way may be called upon to sit for

a practical examination at South Kensington. This examination
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will be held on two consecutive days. The time allowed for work

on each day will be seven hours.

Candidates will be required to make a sheer draught of a vessel

from particulars to be furnished.

Candidates must themselves provide all drawing instruments,

moulds, battens, straight-edges, squares, etc., and all other neces-

saries, except drawing boards, drawing paper, batten weights, and

drawing battens and straight-edges over two feet in length, which

will be furnished by the Department.
Neatness and accuracy in drawing will be insisted on.
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Questions set on Calculations in Examination Papers of the Science

and Art Department^

THIS selection of questions is reproduced by permission of the

Controller of Her Majesty's Stationery Office.

The complete examination set in 1898 is given, together with

the general instructions and rules. This was the first examination

set on the new syllabus given on p. 257.

ELEMENTARY.

The total area of the deck plan of a vessel is 4500 square feet.

What would be the surface of deck plank to be worked if there are

4 hatchways, each 4' x 2}'

2 10' x 6'

and two circular skylights, each 4 feet in diameter, over which no

plank is to be laid ?

Write down and explain Simpson's second rule for finding the

area of a plane surface.

The half-ordinates of the water-plane of a vessel in feet are

respectively, commencing from abaft, 2, 6*5, 9'3, 107, 11, 11, 10,

7'4, 3'6, and o'2, and the common interval between them is 15 feet.

Find the area of the plane in square feet.

A piece of African oak keelson is 24' x 12" x 10". What is

its weight ?

1 The complete examination papers set by the examiners of the Science
and Art Department are published yearly, price >d. Questions in Naval
Architecture set at the Science and Art Examinations, with answers, are

issued for Elementary, Advanced, and Honours by Mr. T. H. Watson,
10, Neville Street, Newcastle-on-Tyne,
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A steel plate is of the form and dimensions shown. What is

its weight ?

I
I

L, z-.

FIG. no.

Writedown and explain Simpson's first rule for finding the area

of a plane surface.

The half-ordinates of a deck plan in feet are respectively i|-, 5^,

xoj, 13^, 142, Hi? I2i, 9, and 3!, and the length of the plan is 128

feet. Find the area of the deck plan in square yards.

Referring to the previous question, find the area in square feet

of the portion of the plan between the ordinates i] and 5}.

The areas of the water-line sections of a vessel in square feet are

respectively 2000, 2000, 1600, 1250, and 300. The common interval

between them is \\ feet. Find the displacement of the vessel in

tons, neglecting the small portion below the lowest water-section.

A steel plate ^ of an inch thick, is of the form and dimensions

shown below. Find its weight in pounds.

r~

FIG. in.

Write down

(1) Simpson's first rule,

(2) Simpson's second rule,

for finding the areas of plane surfaces, and state under what con-
ditions each rule is applicable.
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The half-ordinates of the midship section of a vessel are

127, I2'8, I2'9, 12-9, 12-9, 12-8, 12-5, 1 1-9, 10-4, 5 '9, and 1*4 feet

respectively, and the common interval between them is 18 inches.

Find the area of the section in square feet.

A Dantzic oak deck plank is 25' 6" long and 4}" thick. It is

8 inches wide at one end, and tapers gradually to 6 inches at the

other end. What is its weight ?

What is meant by "tons per inch immersion"?

The " tons per inch immersion "
at the load water-plane of a

ship is 3O'5- What is the area of the load water-plane? and what

would be the displacement in cubic feet and in tons, of a layer

4 inches thick in the vicinity of this plane ?

Write down and explain Simpson's first rule for finding the area

of a plane surface.

The half-ordinates of the load water-plane of a vessel are

o-i, 2
-

6, 5, S'3, 10, io'8, 11, n, 10-5, 9-6, 7'6, 5-5, and 0-4 feet

respectively, and the common interval between the ordinates is

9 feet. Find the area of the load water-plane.
What is meant by

" tons per inch immersion "
?

Referring to the previous question, what number of tons must
be taken out of the vessel to lighten it 3^ inches ? and what weight
would have to be put into the vessel to increase her draught of

water by 2 inches ?

Define displacement.
A cylindrical pontoon is 50 feet long and 4 feet in diameter. It

floats in sea-water with its axis at the surface of the water. What
is its displacement in cubic feet and in tons ?

A steel plate, g of an inch thick, is of the form and dimensions

shown below. Find its weight in pounds.

FIG.
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Write down

(1) Simpson's first rule,

(2) Simpson's second rule,

for finding the areas of plane surfaces, and clearly explain in what
cases each of these rules is applicable.

The semi-ordinates of the boundary of the deck of a vessel in

feet are respectively 0*1, o -

5, ir6, 15*4, i6'8, 17, 16*9, i6'4, 14^5, 9^4,

and o'i, the semi-ordinates being n feet apart. Find the area of

the deck in square yards.
What is meant by the displacement of a vessel ?

A vessel is of a rectangular section throughout ; it is 80 feet

long, 15 feet broad, and draws in sea-water 6 feet forward and

8 feet aft. What is its displacement in cubic feet and in tons ?

A rectangular
"
steel

" deck-plate is 14' 3" long, 3' 3^" wide, and

.V' thick. A circular piece 13 inches in diameter is cut out of the

centre of the plate. What is the weight of the plate ?

Write down and explain

(1) Simpson's first rule,

(2) Simpson's second rule,

for finding the areas of plane surfaces, and state under what con-

ditions each rule is applicable.

The half-ordinates of the midship section of a vessel are 12-8,

I2'9, 13, 13, 13, I2'9, 12-6, 12, 10-5, 6'o, and i'5 feet respectively,

and the distance between each of them is 18 inches. Find the

area of the midship section in square feet.

A Dantzic oak plank is 24 feet long and 3=} inches thick. It is

7 inches wide at one end, and tapers gradually to 5-^ inches at the

other end. What is its weight in pounds ?

Having given a deck plan of a ship with ordinates thereon to

find its area, how would you know which of Simpson's rules it

would be necessary to use ?

The semi-ordinates of the load-water plane of a vessel are 0-2,

3*6, 7'4, 10, n, 107, 9-3, 6'5, and 2 feet respectively, and they
are 15 feet apart. What is the area of the load water-plane?

What is meant by
" tons per inch immersion "

?

Referring to the previous question, what weight must be taken

out of the vessel to lighten her 3^ inches ?

What additional immersion would result by placing 5 tons on

board ?
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Give approximately the weights per cubic foot of

(1) Teak.

(2) Dantzic oak.

(3) English elm.

(4) Iron.

(5) Steel.

A solid pillar of iron of circular section is 6' 10" long and 2]" in

diameter. What is its weight ?

Write down and explain Simpson's first rule for finding the

area of a plane surface.

The half-ordinates of a transverse section of a vessel are 12-2,

I2'2, 12-1, ir8, u-2, iox>, and 7-3 feet in length respectively,
and their common distance apart is 16 inches. Neglecting the

portion below the lowest ordinate, find the total area of the section

in square feet.

The water-planes of a vessel are 4 feet apart, and their areas,

commencing with the load water-plane, are 12,000, 11.500, 8000,

3000, and o square feet respectively. Find the displacement of the

vessel in tons.

What weight would have to be taken out of the vessel referred

to in the previous question, in order to lighten her 4 inches from

her load water-plane ?

A wrought-iron armour plate is 15' 3" long, 3' 6" wide, and 4!"
thick. Calculate its weight in tons.

The half-ordinates of the midship section of a vessel are 22^3,

22'2, 217, 20-6, 17-2, 13-2, and 8 feet in length respectively. The
common interval between consecutive ordinates is 3 feet between the

first and fifth ordinates, and i' 6" between the fifth and seventh.

Calculate the total area of the section in square feet.

Write down and explain Simpson's second rule for finding the

areas of plane surfaces.

Obtain the total area included between the first and fourth

ordinates of the section given in the preceding question.

The " tons per inch immersion " of a vessel when floating at a

certain water-plane is 44'5. What is the area of this plane ?

A Dantzic fir deck-plank is 22 feet long and 4 inches thick, and

tapers in width from 9 inches at one end to 6 inches at the other.

What is its weight ?
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ADVANCED.

The half-ordinates of the load water-plane of a vessel in feet,

commencing from abaft, are respectively 2.}, 8, iii, 13^, 13!, 12^,

9}, 4j, and J, the common interval between the ordinates being
1 6 feet. Find

(1) the area of the plane ;

(2) the longitudinal position of its C.G. abaft the foremost
ordinate.

Write down and explain Simpson's second rule for rinding the

area of a plane surface.

The half-ordinates of a water-plane of a vessel in feet are

respectively, commencing from abaft, 2, 6-5, 9-3, 107, n, u, 10,

7'4, 3-6, and o'2, and the common interval is 14 feet. Find the

area of the plane in square feet.

Having given the dimensions on the load water-plane, state the

practical rules by which a close approximation may be made to the

weight which must be added, or removed, to change the mean

draught of water one inch, in three different types of vessels.

Define displacement. The areas of the vertical traverse

sections of a ship up to the load water-plane in square feet are

respectively 25, 100, 145, 250, 470, 290, 220, 165, and 30, and the

common interval between them is 20 feet. The displacement in

tons before the foremost section is 5, and abaft the aftermost

section is 6. Find the load displacement of the ship in tons and in

cubic feet.

Write down and explain the formula giving the height of the

transverse metacentre above the centre of buoyancy.
State clearly the use that can be made of this height by the

naval architect when he knows it for any particular vessel.

What principle should be followed in arranging the fastenings

in a stringer plate at the beams and at the butts ?

A stringer plate is 42" x \". Show the riveting in a beam and

at a butt, stating size and pitches of rivets, and show that the

arrangement you give is a good one.

The half-ordinates in feet of the load water-plane of a vessel are

respectively 0*2, 4, 8-3, 11-3, 13-4, 13-4, 10*4, 7-2, and 2'2, the length
of the plane being 130 feet. Find

(1) the area of the plane ;

(2) the distance of its C.G. from No. 5 ordinate ;

(3) the decrease in draught of water by removing 25 tons from

the vessel,
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A ship passes from sea-water to river-water. Show how an

estimate may be made for the change in the draught of water.

What will be the mean draught in rz'zw-water of a ship whose

mean draught in sea-water is 25 feet, her length on the water-line

being 320 feet ; breadth extreme 48 feet, and displacement 7500
tons ?

The areas of five equidistant water-planes of a vessel in square

feet are respectively

(1) 4100

(2) 3700

(3) 3200

(4) 2500

(5) HOO
the common interval between them is 2 feet, and the displacement
below the lowest water-plane is 50 tons. Find

(r) the tons per inch at each of the water-planes ;

(2) the displacement in tons up to each of the first four water-

planes.

Explain clearly, illustrating your remarks with rough sketches,

how curves of displacement and curves of tons per inch immersion

are constructed, and state what use is made of them.

A portion of a cylindrical steel stern shaft-tube i \ inches thick,

is 15-} feet long, and its external diameter is 15 inches. Find its

weight.

When would you use

(1) Simpson's first rule,

(2) Simpson's second rule,

for finding the area of a plane surface ?

The half-ordinates of a water-plane of a vessel, in feet, are

respectively, commencing from "forward," 0^3, 3'8, 7'6, io'2, ii'5,

ii'5, n, 9'5, 67, and 2, and the common interval between them
is 1 6 feet. Find

(1) the area of the plane in square feet ;

(2) the distance of the centre of gravity of the plane
"
abaft

"

the " foremost " ordinate.

Explain briefly the method of finding the displacement of a ship
from her drawings.

What is the " centre of buoyancy
''

?

The load displacement of a ship is 5000 tons, and the centre of

buoyancy is 10 feet below the load water-line. In the light condi-

tion the displacement of the ship is 2000 tons, and the centre of
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gravity of the layer between the load and light lines is 6 feet below

the load-line. Find the vertical position of the centre of buoyancy
below the light line in the light condition.

The ordinates of the boundary of the deck of a ship are 6-5,

24, 29, 32, 33-5, 33-5, 33-5, 32, 30, 27, and 6-5 feet respectively,

and the common interval between them is 21 feet.

The deck, with the exception of a space of 350 square feet, is

covered with f-inch steel plating, worked flush-jointed with single

riveted edges and butts. Find the weight of the plating, including

straps and fastenings.

In arranging the butt fastenings of the bottom plates of a ship

what principles would guide you in determining the rows of rivets

and the spacing of the rivets, in the butt straps ?

The half-ordinates of a vessel's load water-plane are o f

r, 2 '6,

5, 8*3, 10, 10-8, ir, n, 10-5, 9-6, 7'6, 5-5, and 0-4 feet respectively ;

the common interval between the ordinates is 9 feet. Find

(1) the area of the load water-plane

(2) the distance of its centre of gravity
" abaft " the " foremost

"

ordinate ;

(3) the
" tons per inch immersion "

at the load water-plane.
Define "

displacement
" and "

centre of buoyancy."
The transverse sections of a vessel are 25 feet apart, and their

"half-areas below the L.W.L. are i, 37, Si, 104, 107, 105, 88, 48.

and 6 square feet respectively. Find

(1) the displacement in tons up to the L.W.L. ;

(2) the longitudinal position of the centre of buoyancy "abaft "

the " foremost "
section.

. How is a " curve of displacement
"
constructed ? What are its

uses ?

A transverse bunker is filled with coal stowed in the ordinary

way. Find the weight of the coal from the following particulars :

The tranverse section is of the same form throughout the length

f the bunker, which is 12 feet long.

The semi-ordinates in feet of the transverse section are

respectively 6, 9, zoi, 1 1 J, 12^, 12^, and 12 feet, the common interval

being 2 feet.

44 cubic feet of coal as ordinarily stowed weighs I ton.

What principle should be followed in arranging the fastenings

in a stringer plate at the beams and at the butts ?

A stringer plate is 40" x -g". Show the riveting in a beam and
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at a butt, stating sizes and pitches of rivets, and show that the

arrangement you give is a good one.

The semi-ordinates of the load water-plane of a vessel in feet

are respectively OT, 5, ir6, 15*4, i6'8, 17, 16x5, 16*4, 14*5, 9^4, and

o'i, and the common interval is n feet. Find

(1) the area of the plane in square feet
;

(2) the distance of its G.C. from the 17-feet ordinate, stating

whether the G.C. is before or abaft that ordinate ;

(3) the tons per inch.

How is a curve of
"
tons per inch " constructed ? What use is

made of such a curve ?

The tons per inch at the successive water-planes of a vessel,

which are \\ feet apart, are respectively 6-5, 6'2, 5'6, 4*5, and o.

Construct the curve of tons per inch on a scale of i inch to

i foot of draught and i inch to i ton.

Define displacement.

Having given the length at L.W.L., breadth extreme, and the

mean draught of water, give approximate rules for finding the dis-

placement in tons of

(1) gun vessels of the Royal Navy ;

(2) mercantile steam-ships having high speeds.
A rectangular pontoon 100 feet long, 50 feet wide, 20 feet deep,

is empty and floating in sea-water at a draught of 10 feet. What
alteration will take place in the floating condition of the pontoon,
if the centre compartment is breached and in free communication

with the sea, if

(1) the pontoon were divided into five equal water-tight com-

partments by transverse bulkheads of the full depth of the

pontoon ;

(2) the water-tight bulkheads referred to in (i) ran up to and

stopped at a deck which is
" not "

water-tight, 1 2 feet from

the bottom of the pontoon ?

Referring to the fourth question back, if a deck surface of equal
area to that of the load water-plane therein mentioned were covered

with f-inch steel plating worked flush jointed with single riveted

edges and butts, what would be the weight of the plating, including

straps and fastenings ?

When would you use

(1) Simpson's first rule,

(2) Simpson's second rule,

for finding the area of a plane surface ?
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The half-ordinates of a water-plane are 1 5 feet apart, and their

lengths, "commencing from forward," are respectively rg, 6'6, 11,

14-5, 17-4, 19-4, 20'5, 20'S, 20-3, i8'8, 15-8, io'6, and 2'6. Find

(1) the area of the plane in square feet ;

(2) the distance of the centre of gravity of the plane abaft the

foremost ordinate.

Define displacement and centre of buoyancy.
The areas of the vertical transverse sections of a vessel in square

feet up to the load water-plane,
"
commencing from forward," are

respectively 25, 100, 145, 250, 470, 290, 220, 165, and 30, and the

common interval between the sections is 20 feet. Neglecting the

appendages before and abaft the end sections, find

(1) the displacement of the vessel in tons
;

(2) the longitudinal position of the centre of buoyancy abaft the

foremost section.

A portion of a cylindrical steel stern shaft-casing is I2f feet long,

i j inches thick, and its external diameter is 14 inches. Find its

weight in pounds.
State the conditions under which a ship floats freely and at rest

at a given water-line in still water, and describe what calculations

have to be made in order to ascertain that the conditions will be

fulfilled.

The semi-ordinates in feet of the load water-plane of a vessel

are, commencing from forward, o, 07, 3, 7, 8'5, 8, 6-5, 5, 2'5, and

i respectively, and the total length is 126 feet. Find

(1) the area of the plane ;

(2) the longitudinal position of its centre of gravity
"
abaft

"
the

foremost ordinate ;

, (3) the increase in draught caused by placing 20 tons on
board.

If a deck surface of equal area to the load water-plane, referred

to in the previous question, were covered with ^-inch steel plating,
worked flush, jointed with single riveted edges and butts, what
would be the weight of the plating, including straps and fastenings ?

How is a curve of tons per inch immersion constructed ?

What are its uses? Draw roughly the ordinary form of such
curves.

A stringer plate is 40 inches wide and \ inch thick. Show the

rivets in a beam and at a butt, and prove by calculation that the

arrangement is a good one.
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The transverse sections of a vessel are 20 feet apart, and their

areas up to the load water-line, commencing from forward, are 3,

35, 83, 136, 175, 190, 179. 146. 98, 50, and 1 1 square feet respectively.

Find

(1) the displacement of the vessel in tons
;

(2) the distance of the centre of buoyancy from the foremost

section.

A teak deck, 2?f inches thick, is supported upon beams spaced

4 feet apart and weighing 1 5 Ibs. per foot run. Calculate the weight
of a middle-line portion of this deck (including fastenings and

beams), 24 feet long and 10 feet wide.'

Show by sketch and description how a curve of displacement is

constructed, and state its uses.

If it were required to so join two plates as to make the strength
at the butt as nearly as possible equal to that of the unpierced

plates, what kind of butt strap would you adopt ?

Supposing the plates to be of mild steel 36 inches wide and

\ inch thick, give the diameter, disposition, and pitch of rivets

necessary in the strap.

The half-ordinates of the load water-plane of a vessel are 1 2 feet

apart, and their lengths are 0-5, 3-8, 77, ii'S, 14-6, i6'6, 17*8, iS'3,

iS'5, i8'4, iS'2, 17-9, I7'2, 15-9, 13*4, 9'2, and 0*5 feet respectively.

Calculate

(1) the total area of the plane in square feet
;

(2) the longitudinal position of its centre of gravity with refer-

ence to the middle ordinate ; and

(3) the tons per inch immersion at this water-plane.
The beams of a deck are 3 feet apart, and weigh 22 Ibs. per

foot run
;
the deck plating weighs 10 Ibs. per square foot, and this

is covered by teak planking 3 inches thick. Calculate the weight
of a part 54 feet long x 10 feet wide of this structure, including

fastenings.

A vessel has the
''

tons per inch "
specified below at the several

water-planes, viz. 17, 16, 14*6, 127, 97, 4*5, and o, and the planes
are 3 feet apart. Calculate the displacement of the vessel in tons.

State

(1) the shearing stress of a -inch steel rivet ;

(2) the ultimate tensile strength of mild steel plates.

What reduction is allowed for in calculating the strength of the

material left between closely spaced punched holes in mild steel

plates ?
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HONOURS.

The ''tons per inch" of five equidistant water-planes of a ship

are respectively 9*8, 8-8, 7-6, 5-9, and 3-4, the water-planes being

2} feet apart. Below the lowest of the planes mentioned is an

appendage of 60 tons. Calculate the displacement in tons up to

each of the water-planes.

Referring to the previous question, construct the curve of dis-

placement on a scale of f inch per foot of draught, and f inch per

100 tons of displacement, the lowest water-plane mentioned being

3 feet above the keel.

Obtain the expression for the height of the transverse metacentre

above the centre of buoyancy.
The displacement of a vessel is 400 tons, and the transverse

metacentre is 5 J feet above the centre of buoyancy. A weight of

1 2 tons, already on board, is moved 8 feet across the deck : find the

inclination of the vessel to the upright, the C.G. of the vessel being

3 feet above the C.B.

tan 4 = 0-0699

tan 5
= 0-0875

tan 6 = 0-1051
What is meant by

" moment to change trim "
? Write down

and explain the expression which gives the moment to alter trim

one inch.

Suppose a weight of moderate amount to be put on board a

ship, where must it be placed so that the ship shall be bodily deeper
in the water without change of trim ? Give reasons for your
answer.

A transverse iron water-tight bulkhead is worked in a ship at

a station whose semi-ordinates are (commencing from below) 6, 9,

ioi, jij, 12^, I2|, and 12 feet respectively, the common interval

being 2 feet. Find the weight of the bulkhead, the following par-
ticulars being given :

i 4. j i u ,.. j i 4. j /H inch for lower 5 feet.
Plates, lap jointed, lap butted, single riveted <

H
fi

. , ,
-1

Angle bar stifieners 24 inches apart on ~k
,

, .

one side of bulkhead )

2 * l1r *

Distinguish between hogging and sagging strains. A vessel

has an excess of weight amidships : to what conclusion would you
generally arrive as to the strains produced ?

Point out, illustrating your remarks by a simple example, that

your general conclusion might not be correct in some cases.

T
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What are the causes which influence the forms of curves of

stability ?

Give an example of such curves for

(1) a low freeboard mastless armourclad
;

(2) a high freeboard cruiser with large sail spread.

Explain how lifeboats are designed to automatically right them-

selves when capsized, and to free themselves of water when

swamped.

The half-ordinates of a portion of a deck plan of a vessel, com-

mencing from abaft, are 2, 8, and 1 1 \ feet respectively, and the

common interval is 16 feet. On the beams :between the two after-

most ordinates, steel plating -J- inch thick is to be worked. What is

the weight of the plating ?

From the particulars given below, find the displacement in tons

of the vessel up to L.W.L.
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Briefly describe an experimental method of obtaining a curve

of stability for a ship. Compare the method with the calculation

method.

How would you proceed in arranging the fastenings in a

stringer plate at the beams and at the butts ?

A stringer plate is 38 inches wide and f^ inch thick. Sketch

the riveting in a beam and at a butt, and show that the arrange-

ment is a good one.

Show how a comparison may be made between the turning

effects on a ship of

(1) A narrow rudder held at a certain angle by a given force at

the end of a tiller ; and

(2) A broader rudder of equal depth held by an equal force at

a smaller ansrle.

From the particulars given below find

(1) the displacement in tons of the vessel up to L.W.L. ;

(2) the distance of the centre of buoyancy abaft the foremost

station
;

(3) the depth of the centre of buoyancy below L.W.L.

L.W.L.
2 W. L.

3 W.L.

Half-ordinates in feet at stations.
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In what classes of ships would you expect the metacentre to fall

quickly as the draught lightens, and after reaching a minimum

height to gradually rise again ?

A steel ship is found, on her first voyage at sea, to be structurally

weak longitudinally. How would you attempt to effectually

strengthen the ship with the least additional weight of material,

giving your reasons ?

What is meant by
" curves of weight

" and " curves of buoyancy
"

as applied to the longitudinal distribution of weight and buoyancy
in ships ?

Show how these curves are obtained ; and draw, approximately,
on the same scale and in one diagram, such curves for any type of

vessel with which you are acquainted, mentioning the type you
have taken.

The half-ordinates of a vessel's load water-plane are o'i, 2'6,

5, S'3, 10, 10-8, u, n, 10*5, 9'6, 7*6, 5-5, and 0-4 feet respectively,

the common interval being 9 feet. The water-planes of this vessel

are if feet apart, and the "tons per inch" for those below the load

water-plane are 3*5, 3
-

o, 2'4, and o'Q respectively. The keel appen-

dage is of 5 tons displacement, and at 7*5 feet below the load

water-plane. Find

(1) the total displacement in tons
;

(2) the vertical position of the centre of buoyancy below the

load water-plane.

Explain how the height of the transverse metacentre above the

centre of buoyancy of a ship may be found

(1) accurately;

(2) approximately and quickly ;

and state clearly what use is made of the result by the naval

architect.

What is meant by change of trim ?

Write down the expression which gives the " moment to change

trim," and explain by means of a diagram how the expression is

obtained.

A ship is 375 feet long, has a longitudinal metacentric height

(G.M.) of 400 feet, and a displacement of 9200 tons. If a weight
of 50 tons, already on board, be shifted longitudinally through

90 feet, what will be the change in trim ?

Under what circumstances may it be expected that the cargoes
of vessels will shift ?

In a cargo-carrying vessel, the position of whose C.G. is known,
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show how the new position of the C.G. due to a portion of the

cargo shifting may be found.

A ship of 4000 tons displacement, when fully laden with coals,

has a metacentric height of i\ feet. Suppose loo tons of coal to

be shifted so that its C.G. moves 18 feet transversely and 4^ feet

vertically ; what would be the angle of heel of the vessel, if she were

upright before the coal shifted ?

tan 10 = 0-1763

tan 11 = O'I944
tan 12 = 0-2126

tan 13 = 0-2309
What portions of a properly constructed steel ship are most

effectual in resisting longitudinal bending ? Why ?

What principle should be followed in arranging the fastenings
in a stringer plate at the beams and at the butts?

A stringer plate is 40" x f". Show the riveting in a beam and
at a butt, stating size and pitches of rivets, and show that the

arrangement you give is a good one.

Enumerate the strains to which ships are subjected which tend

to produce changes in their
" transverse " forms.

When are the most severe transverse strains likely to be

experienced by a ship at "rest"? Point out in such a case the

forces acting on the ship, and state what parts of the ship, if she be

properly constructed, will effectually assist the structure in resisting

change of form.

From the particulars given below, find

(1) the displacement in tons up to the L.W.L. ;

(2) the depth of the centre of buoyancy below the L.W.L.
;

(-3) the longitudinal position of the centre of buoyancy with

respect to No. 3 station.
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before and abaft end ordinates and below No. 5 W.L. being

neglected.)

Define centre of gravity. Write down and explain the rule for

finding the '

transverse
"
position of the C.G. of the ''

longitudinal
"

half of a water-plane.

The ordinates of half a water-plane in feet are respectively

o'i, 5, 1 1 -6, 15*4, i6'8, 17, i6'9, i6'4, 14/5, 9*4, and 0*1, and the

common interval is 1 1 feet. Find the " transverse "
position of the

C.G. of the half water-plane.
The semi-ordinates of the boundary of a ship's deck in feet are

respectively, commencing from forward, 0*3, 9-2, 17, 22'5, 26, 28,

29, 29-5, 29-5, 29-5, 29-5, 29-5, 29-3, 29, 28-5, 27-5, 25-5, 21, and 11-5 ;

the common interval being 18 feet.

A steel stringer plate is worked on the ends of the deck beams
on each side of the ship, of the following dimensions : 54" x f

"
for

half the length amidships, tapering gradually to 32" x -\" at the

fore extremity, and to 40" x i" at the after extremity. The butts

are treble chain riveted. Find approximately the weight of the

stringer plate, including fastenings and straps.

Define the term " metacentre." Prove the rule for finding the

height of the transverse metacentre above the centre of buoyancy.
State clearly what use is made of the result by the naval architect.

What is a metacentric diagram ? How is such a diagram con-

structed ? For what classes of ships are such diagrams specially

useful ?

Draw a typical metacentric diagram for merchant ships of

deep draught in proportion to their beam when fully laden, with

approximate vertical sides between the load and light lines.

Sketch the water-tight subdivision of an efficiently subdivided

steam mercantile ship.

In some ships the transverse water-tight bulkheads are so badly

arranged that it would be preferable, as a safeguard against rapid

foundering, if the vessels were seriously damaged below the water-

line, to dispense with these bulkheads. Explain, with sketches,

how this conclusion is arrived at.

What portions of a ship's structure offer resistance to cross-

breaking strains at any transverse section ?

Explain clearly how you would proceed with the calculations,

and state what assumptions you would make, in finding the strength
of the midship section of an iron ship against cross-breaking strains.

Define "
displacement,"

" centre of buoyancy," and " tons per
inch immersion."



Appendix. 279

From the particulars given below, find:

(a) the displacement of the vessel in tons
;

(b} the longitudinal position of the centre of buoyancy, with re-

spect to No. 3 station ;

(c] the tons per inch at the L.W.L.
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From the particulars given below, find

(1) the area of the L.W. plane, and tons per inch immersion at

the L.W.L. ;

(2) the displacement of the vessel in tons ;

(3) the position of the centre of buoyancy in relation to the

L.W.L. and No. 3 station.

,



Appendix. 281

How are the curves made, and what are their uses? What checks

would you adopt to verify the accuracy of the curves, and what

guarantee would you have that the conditions of the checks are

correct ?

What are the most severe strains likely to be experienced by
a ship at rest ? Point out the forces acting on the ship, and state

what parts of the structure operate in resisting change of form.

What are equivalent girders for ships? Briefly describe how

they are constructed.

The water-lines of a vessel are 5 feet apart, and the " tons per
inch" at those lines, commencing from the load water-line, are

23-8, 21 '9, 19-5, i6'4, and 6 tons respectively. Neglecting the

appendage below the lowest water-line, calculate the displacement
of the vessel, and the vertical position of the centre of buoyancy

(1) when floating at her load water-line
;

(2) when floating at the line next below her load water-line.

Obtain the formula giving the height of the longitudinal meta-

centre above the centre of buoyancy.
What is meant by

"
change of trim "

?

A ship 220 feet long has a longitudinal metacentric height of

252 feet, and a displacement of 1950 tons. Calculate the change
of trim due to shifting a weight of 20 tons, already on board,

through a longitudinal distance of 60 feet.

Describe in detail how you would proceed to obtain the statical

stability at large angles of inclination of a vessel of known form.

Show how you would calculate the weight of the outer bottom

plating of a vessel, and the position of its centre of gravity.

The shearing force and bending moment operating at every
transverse section of a vessel floating at rest in still water being

required, how would you proceed to obtain this information ?

Explain clearly how the stability of a vessel at small angles of

inclination is affected by the presence of water on board, which is

free to shift transversely.

A box-shaped vessel, 105 feet long and 30 feet broad, floats at a

uniform draught of 10 feet. A central compartment, 20 feet long,

contains water which is free to shift from side to side. Calculate

by how much the metacentric height is reduced from what its value

would have been had the water been_/?.m

Write down and explain Simpson's first and second rules for

obtaining the areas of plane surfaces.
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The half-ordinates of the load water-plane of a vessel are 13 feet

apart, and their lengths are 0-6, 4-6, 9*1, I2'8, 15*5, i7'2, iS'i, i8'4,

18*5, i8'5, iS'4, i8'2, 177, i6'9, I5'3, I2'5, and 7 'o feet respectively.

Calculate

(1) the total area of the plane in square feet
;

(2) the area included between the third and sixth ordinates.

The water-planes of a vessel are 3 feet apart, and the displace-
ments up to the several planes are 2380, 1785, 1235, 740, 325, 60, o

tons respectively. Calculate the vertical position of the centre of

buoyancy, and show that the method you employ is correct.

Define the terms "metacentre" and "metacentric height."

The load displacement of a vessel is 1880 tons when floating at

the water-plane given in the second question above. Calculate

her longitudinal metacentric height, assuming the ship's centre of

gravity to be in the load water-line, and her centre of buoyancy
6 feet below that line.

Sketch a metacentric diagram for any one type of ship, specify-

ing the type chosen. How is such a diagram constructed ?

What is meant by the dynamical stability of a vessel at any

angle of inclination ? Obtain Moseley's formula for calculating its

value.

Explain how you would proceed to calculate the weight, and

position of centre of gravity, of the transverse framing of a vessel.

Show how you would calculate the
' wetted surface " of a vessel

with considerable accuracy. Describe any method of rapidly cal-

culating wetted surfaces with which you may be acquainted.

1898.

SUBJECT IV. NAVAL ARCHITECTURE.

EXAMINER : J. J. WELCH, ESQ., R.C.N.C.

GENERAL INSTRUCTIONS.

If the rules are not attended to, the paper will be cancelled.

You may take the Elementary stage, or the Advanced stage, or

Part I. of Honours, or (if eligible) Part II. of Honours, but you must

confine yourself to one of them.

Put the number of the question before your answer.

You are to confine your answers strictly to the questions

proposed.
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Your name is not given to the Examiner, and you are forbidden

to write to him about your answers.

The value attached to each question is shown in brackets after

the question. A full and correct answer to an easy question will

in all cases secure a larger number of marks than an incomplete
or inexact answer to a more difficult one.

The examination in this subject lastsforfour hours.

FIRST STAGE OR ELEMENTARY EXAMINATION.

Instructions.

You are permitted to answer only ten questions.

You must attempt No. u. Two of the remaining questions
should be selected from the Calculations ;

and the rest from the

Practical Shipbuilding section.

PRACTICAL SHIPBUILDING.

1. Give a sketch of a side bar keel, and describe how the several

lengths are secured together, and how the work is made water-

tight. (8)

2. Describe the operation of getting an ordinary bar stem into

its correct position on the blocks. (8)

3. Sketch a transverse frame, from keel to water-tight longitu-

dinal (or to margin plate), of a vessel having a double bottom.

Specify usual sizes of plates and angles for a large ship. (12)

4. Describe the usual method of bending and bevelling the

frame angle-bars of a vessel. (8)

5. In some cases it is necessary to work the floor-plate of a

transversely framed vessel in two lengths. Describe, with sketches,

two usual methods of connecting these lengths together. (10)

6. Show how a beam of ~1 section is secured to the framing,

giving usual disposition and pitch of rivets. (8)

7. If, after a bottom plate is in position, it is found that the rivet

holes do not quite correspond with those of the adjacent plates,

what should be done to rectify this and to ensure sound work ?

(8)

8. Name, with sketches, the finished forms of rivets employed
in shipwork. (8)

9. Sketch a usual shift of butts of deck plating, and show how
the several plates are secured together, and to the beams. Specify
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size and pitches of rivets which would be used, assuming the plating
to be ^1%" thick. (12)

10. Give a rough sketch of a frame of a composite vessel,

naming the several parts of which it is made up. (8)

DRAWING.

11. What does sketch, Fig. 113, represent ? Draw it neatly in

pencil on a scale twice the size shown. (14)

ELEMENTARY STAGE.

FIG. 113.

CALCULATIONS.

1 2. State the fundamental conditions which must be fulfilled by
a vessel when floating freely and at rest in still water. (6)

13. The areas of successive water-planes of a vessel are, begin-

ning with the load water-plane, 14,850, 14,400, 13,780, 12,950,

11,770, 10,130, and 7680 square feet respectively, and the common
interval between the planes is 3^ feet. Neglecting the part below

the lowest water-plane, calculate the vessel's load displacement in

tons. (12)

14. Point out why it is that a vessel sinks deeper in the water

when passing from the sea into a river.
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How much would you expect the vessel in the preceding example
to sink from her load-line under such circumstances ? (8)

15. The external diameter of a hollow steel shaft is 18 inches,

and its internal diameter 10 inches. Calculate the weight of a

2o-feet length of this shafting. (8)

SECOND STAGE OR ADVANCED EXAMINATION.

Instructions.

Read the General Instructions on p. 282.

You are permitted to answer only twelve questions.

You must attempt Nos. 29 and 33. The remaining questions

may be selected from any part of the paper in this stage, provided
that one or more be taken from each section, viz. Practical Ship-

building, Laying Off, and Calculations.

PRACTICAL SHIPBUILDING.

21. Give sketches showing the sections of moulded steel in

general use for shipbuilding purposes, and say for what parts of the

structure each is used. (12)

22. For what purposes are webframes fitted in vessels ?

How is a web frame secured where it crosses a continuous

stringer plate ? (12)

23. At what stage of the work are the deck-beams attached to

the frames of a transversely framed ship, and when is the riveting
of beam knees performed ?

Give a sketch of a beam knee, showing the fastenings. (14)

24. Sketch a satisfactory shift of butts of bottom plating, and
show the riveting adopted in edges and butts, and for security to the

frames. Specify size and pitches of rivets, assuming the plating is

iV thick. (20)

25. Describe fully the operations of getting in place and riveting

up a bottom plate, and the precautions necessary to ensure sound
and efficient work. (14)

26. Describe how a large transverse water-tight bulkhead is

constructed, and secured in position. (14)

27. What tests are applied to

(1) mild steel plates,

(2) rivet steel and rivets,

before acceptance from the manufacturer? (16)

28. An ordinary steel deck is to be covered with planking.
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State the order in which this work would be proceeded with, and

show how the planking would be fastened.

Give, on a large scale, a sketch of one of the fastening bolts.

(20)

29. Enumerate the several causes which tend to produce the

transverse straining of ships, and point out the parts of the structure

which supply the necessary transverse strength to resist these

straining actions.

LAYING OFF.

30. How is a Scrive board constructed, and what are its uses ?

(10)

31. Describe briefly the system of fairing the body adopted

(1) in the middle portion,

(2) at the extremities, of a vessel. (12)

32. How would you find the true form of the plane of flotation

of a vessel which has a considerable trim by the stern, and also a

list to starboard or port ? (12)

DRAWING.

33. What does the drawing Fig. 1 14 represent ? Draw it neatly

in pencil on a scale twice the size shown. (24)

ADVANCED STAGE.

N233.

FIG. 114.
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CALCULATIONS.

34. The transverse sections of a vessel are 18 feet apart, and
their areas up to the load water-line, commencing from forward, are

6'5, 55'8, 132*0, 210-9, 266-3, 289-5, 280-2, 235-7, 161-2, 77-8, and 10-9

square feet respectively. Calculate the displacement of the vessel

in tons, and the longitudinal position of her centre of buoyancy.

(14)

35. Referring to the preceding question, calculate the volume of

displacement comprised between the first and sixth sections, and
the distance of the centre of buoyancy of that portion from the

first section. (16)

36. What is a curve of tons per inch immersion ? Show how
such a curve is constructed, and give a sketch indicating its usual

shape. (8)

37. A steel stringer plate is 48 inches wide and y^ inch thick.

Sketch the fastenings in a beam and at a butt, and show by
calculations that the butt connection is a good one. (20)

HONOURS EXAMINATION. PART I.

Instructions.

Read the General Instructions on p. 282.

You are permitted to answer only fourteen questions. You
must attempt Nos. 70 and 74 ;

the remainder you may select from

any part of the paper in this stage, provided that one or more be

taken from each section, viz. Practical Shipbuilding, Laying Off,

and Calculations.

PRACTICAL SHIPBUILDING.
*

60. What is the usual spacing adopted for transverse frames in

(1) a first-class battleship ;

(2) a large merchant vessel ?

Give reasons for the differences noted between the two classes

in this respect, and also for the different spacing adopted in the

several parts of a battleship. (20)

61. What are the characteristic qualities of the following ship-

building materials : (i) Dantzic fir, (2) East India teak, (3) cast

steel ?

State where these materials are employed. (16)

62. Give a rough sketch of the midship section of a vessel having
a double bottom, and point out the order in which the work of



288 Appendix.

erecting the framing of such a ship would be proceeded with in way
of the double bottom. (30)

63. Roughly sketch the stern-post of a screw ship, showing how
it is connected to the keel and bottom plating. (16)

64. What considerations govern the lengths and breadths of

plates used on the bottom of a ship ? Describe fully the work of

getting into place and riveting-up one such plate. (16)

65. Give sections of the beams commonly employed in ship-

building, and say where each form is employed. (12)

66. In what vessels is straining at the butts of bottom plating

specially liable to take place, and why ? What method of stiffening

butt straps has been designed to prevent the above action ? (16)

67. Show by sketch and description how water-tight work is

secured

(i) at the upper edge of a longitudinal bulkhead ;

~1 F
(2) where a middle line keelson of

J
form, worked above

L
the floors, passes through a transverse bulkhead. (16)

68. Describe the work of laying and fastening the planking of a

deck, the beams of which are not covered with plating. (25)

69. Sketch, and describe the working of, a large sliding water-

tight door as fitted to a bulkhead between machinery compartments.

(30)

70. Enumerate the principal local stresses experienced by ships,

and point out what special provision is made to meet each. (25)

LAYING OFF.

71. What information and drawings would you require before

proceeding with the work of laying off a vessel on the mould loft

floor?

Show how the extremities of a ship are usually laid off and
faired. (20)

72. How is the shape of longitudinal plate frames obtained in

those parts of a ship where there is not much curvature ? Sketch

a mould for a longitudinal plate, showing the marks which would

be put upon it for the information of the workman. (16)

73. The lines of a vessel sheathed with wood having been given
to the outside of sheathing, show how you would obtain the body

plan to outside of framing, (i) approximately, (2) accurately. (25)
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CALCULATIONS.

74. The half-ordinates of the load water-plane of a vessel are

spaced 18 feet apart, and their lengths, commencing from forward,

are 0-6, 3-4, 7-1, 11-4, i6'o, 20-3, 24-0, 26-8,28-8, 30-0, 30-5, 30-5,

30-0, 28-9, 27-0, 24-3, 21-1, 17-2, 12-7, 77, and 3-0 feet respectively.

Calculate the total area of the plane in square feet, and the

longitudinal position of its centre of gravity. (25)

75. Prove the formula used for calculating the distance between

the centre of buoyancy and the transverse metacentre of a vessel.

(12)

76. A vessel, 200 feet long between perpendiculars and of 1080

tons displacement, floats at a draft of n' 3" forward and 12' 3" aft,

and has a longitudinal metacentric height of 235 feet. Supposing a

weight of 20 tons to be moved forward through a distance of 120

feet, what would be the new drafts of water forward and aft,

assuming the centre of gravity of the water-plane area is 10 feet

abaft the midship section ? (16)

77. The deck of a vessel is covered with /g-inch mild steel plating,

and the beams, spaced 3 feet apart, weigh 20 Ibs. per foot run.

The half-ordinates of the foremost 84 feet length of this deck are

'8> 3'5> 6-5, 9'4, 12*1, 14*5, 16*6, 18*4, and 20 feet respectively.

Calculate the total weight of plating and beams for this portion of

the deck. (20)

78. Show how the work of estimating the weight and position
of the centre of gravity of the outer bottom plating of a vessel from

her drawings would be proceeded with. (16)

HONOURS EXAMINATION. PART II.

Instructions.

Read the General Instructions on p. 282.

You are not permitted to answer more than fourteen questions,
of which two at least must be taken from the Practical Shipbuilding
and Laying Off section.

NoiE. No Candidate is eligible for examination in Part II.

of Honours who has not already obtained a first or second class in

Honours of the same subject in a previous year.
Those students who answer the present paper sufficiently well

to give them a reasonable chance of being classed in Honours, will

be required to take a practical examination at South Kensington.
Honours candidates admissible to this Examination will be so

informed in due course.
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PRACTICAL SHIPBUILDING AND LAYING OFF.

84. Describe the usual method of bending and bevelling Z-bar

frames by hand.

What advantages are claimed to accrue from the use ofbevelling
machines ? (30)

85. What are the reasons for working mast partners ? Sketch

and describe an arrangement of mast partners for a steel ship.

(20)

86. Describe, with illustrative sketches, the characteristic

features of the launching arrangements adopted for a large ship.

(35)

87. A raking mast, of uniform diameter at its lower end, stands

upon a deck which has considerable round-up and sheer. Show-

how the true shape of the lowest plate of mast would be obtained.

SHIP CALCULATION AND DESIGN.

88. The tons per inch immersion at the several water-planes of

a vessel are 29*1, 28*8, 28*2, 27^3, 26*0, 24*3, 21-9, iS'6, and 13*1

respectively, the common interval between the planes being 2^ feet.

The part of the ship below the lowest water-plane has a displace-

ment of 300 tons, and its centre of buoyancy is 21 i feet below the

load water-line. Estimate (i) the total displacement of the vessel

in tons ; (2) the vertical position of her centre of buoyancy. (25)

89. State and prove Simpson's second rule for the calculation of

plane areas, pointing out clearly the assumptions involved. (25)

90. What are curves of displacement and curves of tons per inch

immersion ? Give sketches showing their usual shapes. (16)

91. How would you proceed to estimate the shearing force and

bending moment acting at any cross-section of a given vessel, when

floating freely and at rest in still water ? (30)

92. Prove Atwood's formula for the statical stability of a vessel

at any angle of heel. Show how a curve of statical stability is

constructed, and explain its uses. (25)

93. A weight of moderate amount is to be placed on board a

given vessel in such a position that the draft of water aft will be

unaffected by the addition. Explain how the necessary position of

the weight can be calculated. (30)

94. Describe any method by which the statical stability of a

vessel of known form and lading can be obtained experimentally.

(25)
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95. What are cross-curves of statical stability ? How are these

related to the ordinary stability curves ? (30)

96. Point out clearly how the presence of water or other liquid

having a free surface in the hold of a vessel affects her stability.

(30)

97. What resistances are experienced by a vessel when being
towed through water at a uniform speed ? What is the relative

importance of these resistances (i) at low speeds, (2) at high

speeds? (16)

98. Write down and explain Froude's law of "corresponding

speeds."
A certain vessel of 1000 tons displacement can be propelled by

engines of 1 150 I.H.P. at 14 knots. What will be the "
correspond-

ing speed
" of an exactly similar vessel of 8000 tons displacement,

and what indicated horse-power is likely to be required to propel
the larger vessel at that corresponding speed ? (35)

99. What is meant by
(1) a stiff vessel;

(2) a steady vessel ?

WT

hat features of the design affect these qualities? (25)

100. A rudder hung at its forward edge and entirely below water

is rectangular in shape, 14 feet deep, and 10 feet broad. Calculate

the diameter of steel rudder-head required, the maximum speed of

the vessel being 14 knots, and the greatest helm angle 35.
AW*. Sin 35 = 0-574. (30)
101. A hole i square foot in area is pierced in a vessel 12 feet

below her load water-line in wake of an empty compartment.
Calculate the capacity in tons per hour of the pumps required to

just keep this leak under. (25)
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curvilinear figure, 14
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Angles, measurement of, 86
Area of circle, 4

figure bounded by a plane curve

and two radii, 15
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rectangle, I

square, I

triangle, 2
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wetted surface, 80, 8 1
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BARNKS' method 'of calculating sta-
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an end compartment, 153
Blom's mechanical method of cal-
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BM, longitudinal, 133

, , approximations, 138
, transverse, 103
, , approximations, 107

Books on theoretical naval archi-
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Buoyancy, centre of, 6l, 62

, strains due to unequal distri-

bution of weight and, 206
Butt fastenings, strength of, 199
Butt straps, treatment of Admiralty
and Lloyd's, 202

CALCULATION of weights, 188

Captain, stability of, 161

Centre of buoyancy, 6l, 62

, approximate position,

63, 64
flotation, 94
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curve and two radii, 58
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of an area with respect to

the base, 56
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of a ship, calculation of,

195
of outer bottom plating,

196
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curved surface and a plane of, 60
of solids, 50

Circle, area of, 4
Circular measure of angles, 86
Coefficient of fineness, displacement,

29, 30
, midship section, 27
, water-plane, 29

speed, 231
Combination table for stability, 175

Comparison, law of, 237
Conditions of equilibrium, 88

stable equilibrium, 92
Corresponding speeds, 236
Crank ship, 123
Cross-curves of stability, 178
Curve of areas of midship section,

27
displacement, 22

sectional areas, 19

stability, 1 60, 166

, calculation of, 168
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Curve of tons per inch immersion. 26

Curves, use of, in calculating ,
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DIFFERENCE in draught, salt and
river water, 30

Direct method of calculating sta-

bility, 177

Displacement, 21

, curve of, 22
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Dynamical stability, 183. 247

EDDY-MAKING resistance, 224
Effective horse-power, 215
Equilibrium, conditions of, 88

, stable, conditions of, 92
Examination of the Science and Art

Department, questions, 262

, syllabus, 257
Experimental data as to strength of

plates and rivets, 201

Experiments on Greyhound, 216
to determine frictional resist-

ance, 221

FIVE-EIGHT rule, 12

Framing, weight of, 192
Free water in a ship, 124
Frictional resistance, 221

Froude, Mr., experiments of, 216,
221

GM by experiment, 115
GM, values of, 121

Graphic method of calculating dis-

placement and position of C.B.,
72

Greyhound, H.M.S., experiments
on, 216

HOGGING strains, 208

Horse-power, 214
, effective, 215
, indicated, 218

Hull, weight of, 193

INCLINING experiment, 115
Indicated horse-power, 218

Inertia, moment of, 97
Integrator, Amsler's, 178
Interference between bow and stern

series of transverse waves, 229
Iron, weight of, 35, 36

LAUNCHING, calculations for, 252
Lloyd's numbers for regulating

scantlings, 194

Lloyd's rule for diameter of rudder-

head, 251

Longitudinal bending strains, 06

Longitudinal BM, 133
metacentre, 1 32
metacentric height, 133

MATERIALS for shipbuilding, weight
of, 35

Mechanical method of calculating

stability, 169
Metacentre, longitudinal, 132

, transverse, 90
Metacentric diagram, 109

height by experiment, 115

, values of, 121

Moment of an area about a line,

50
Moment of inertia, 97

of curvilinear figure, 101

, approximation to,

102
Moment to change trim one inch,

143
, approximate, 144,

157
Monarch, stability of, 161

Moseley's formula for dynamical

stability, 184

NORMAND'S approximate formula

for longitudinal BM, 144
,
for position of C.B.,

63, 249

OUTER bottom plating, weight of,

192

PANTING, 211

Planimeter, 77
Preliminary table for stability, 174
Prismatic coefficient of fineness, 30

Propulsive coefficient, 218
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QUESTIONS set in examinations of

the Science and Art Department,
262

RACKING strains, 210

Rectangle, area of, i

.Residuary resistance, 229
Resistance, 220

Rolling, strains due to, 210

Rudder-head, strength of, 250

SAGGING strains, 208
Science and Art Department exami-

nation, questions, 262

, syllabus, 257
Shaft brackets, form of, 225
Sheer drawing, 64
Shift of C.G. of a figure due to

shift of a portion, 96
Simpson's first rule, 6

, approximate proof,
8

, proof, 245
second rule, IO

, proof, 246

Sinkage due to bilging a central

compartment, 32

Speed, coefficients of, 231
Stability, curves of, specimen, 166

dynamical, 183
, Moseley's formula, 184

statical, 89
at large angles, 158
cross-curves of, 1 78
curve of, 160
calculations for, 168

definition, 89
Steadiness 123
Steel, weight of, 35, 36
Stiffness, 123
Strains experienced by ships, 205
Strength of butt fastenings, 199
Subdivided intervals, 13

Submerged body, resistance of, 231

Syllabus of examinations of Science
and Art Department, 257

TANGENT to curve of centres of

buoyancy, 114
curve of stability at the origin,

166
Tensile tests for steel plates,

Admiralty, 203
, Lloyd's, 203

Timber, weight of, 35
Tons per inch immersion, 26

Transverse BM, 103
metacentre, 90
strains on ships, 210

Trapezium, area of, 3

, C.G. of, 48
Trapezoidal rule, 5

Trapezoid, area of, 2

Triangle, area of, 2

, C.G. of, 48
Trigonometry, 86

Trim, change of, 141

, moment to change, 143

VELOCITY of inflow of water, 35
Volume of pyramid, 17

rectangular block, 17
solid bounded by a curved

surface, 18

sphere, 17

WATER, free, effect on stability,

124
Wave-making resistance, 225
Weight, effect on trim due to adding,

H7, H9
of hull, 193
of materials, 35
of outer bottom plating, 192
steel angles, 189

Wetted surface, area of, 80

Wood, weight of, 35
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