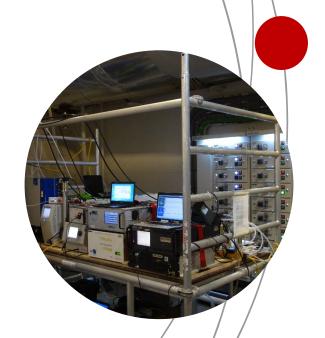
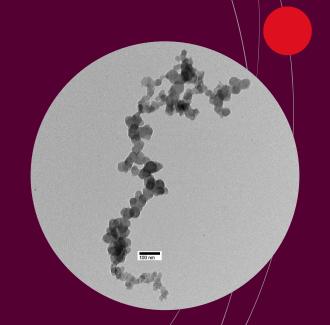


Canada's Research Contribution to a Fair Measurement System

Stéphanie Gagné, NRC - Metrology



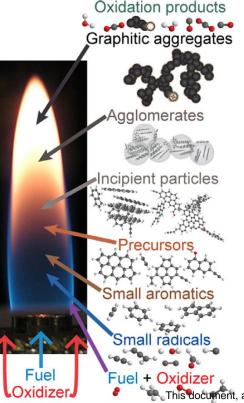
NRC.CANADA.CA


Outline

- 1. What is Black Carbon? What is it not?
- 2. Black Carbon and Canada at the IMO
- 3. Research for a fair measurement system
- 4. An ISO standard for marine BC measurements: a Canadian perspective

WHAT IS BLACK CARBON?

What is it not? Why does it matter?


What is Black Carbon (BC)?

BC is a distinct type of carbonaceous material, formed only in flames during combustion of carbon-based fuels. It has a unique combination of the following physical properties:

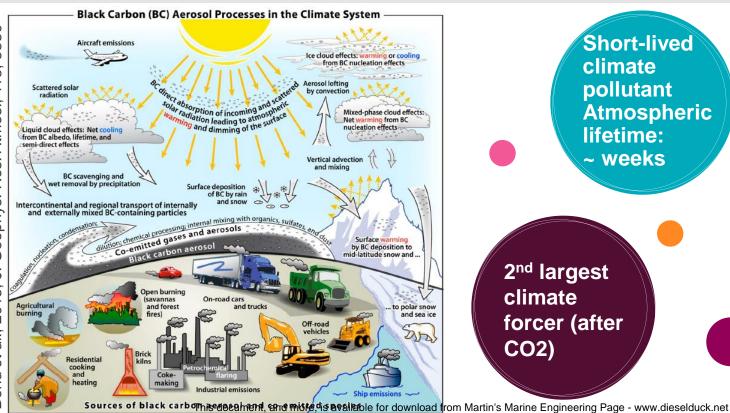
- 1. It strongly absorbs visible light with a mass absorption cross section of at least 5 m2g-1 at a wavelength of 550 nm;
- 2. It is refractory; that is, it retains its basic form at very high temperatures, with vaporization temperature near 4000K;
- 3. It is insoluble in water, in organic solvents including methanol and acetone, and in other components of atmospheric aerosol;
- 4. It exists as an aggregate of small carbon spherules.

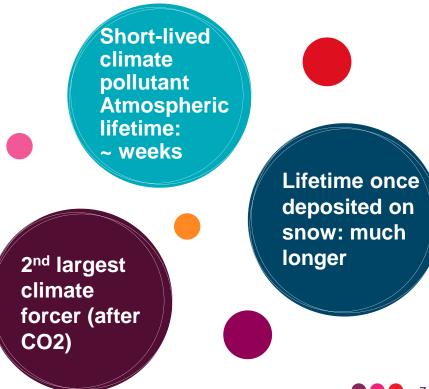
What is Black Carbon (BC)?

[...] formed only in flames during combustion of carbon-based fuels [...]

In some flames, BC is fully oxidized and broken into oxidation products (CO₂ and CO).

BC is emitted when oxidation is incomplete.




What is Black Carbon not?

- BC is a fraction of Particulate Matter (PM) and is non-volatile
 - It is not related to the sulphur content in the fuel
 - It does not condense as the temperature drops
 - It is not destroyed by atmospheric photochemistry
- Not brown carbon
 - Not all of the light-absorbing fraction of PM
 - It is not equivalent to smoke or FSN
- Not ash or metals

Black Carbon and the climate

Health effects of Black Carbon

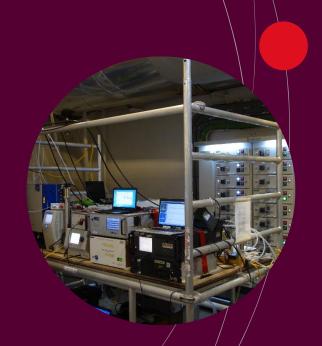
- Association of BC and all-cause and cardiovascular mortality, and cardiopulmonary hospital admissions.
- Association of health effects with BC are 4 to 9 times stronger than with PM_{2.5}
- BC thought to be a carrier for other toxic airborne particulate constituents into organs and blood stream
- An unintentional experiment on people in China lead to a 5.5 years decreased in life expectancy linked to BC.
- Health related costs in Canada alone: ~\$5B/yr

CANADA AT THE IMO

A Leader in Black Carbon Research

A leader on the Black Carbon file

- 2016 (PPR3): Canada involved in 3 of 6 BC papers
 - Gathered consensus on BC definition
- 2017 (PPR4): Canada involved in 3 of 10 BC papers
 - Coordinated correspondence group on reporting protocol
- 2018 (PPR5): Canada involved in 6 of 15 BC papers
 - Gathered consensus on appropriate BC instruments (with guidance)
 - Coordinated correspondence group on control measures
- 2019 (PPR6): Canada involved in 7 of 11 BC papers
 - Gathered consensus on closing the remit (with guidance)

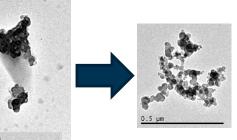


Research & Scientific Contributions

- Promoted the scientific definition of Black Carbon
 A material with distinctive climate and health properties, and distinctive optical, physical and chemical properties
- Contributed 4+ studies comparing measurement instruments
 Selected multiple: FSN, PAS, LII
- Contributed 3+ studies evaluating BC control measures (not discussed)
 EGR, SCR, EGC and different fuels (LNG, diesel, Blends, HFO, etc.)
- Suggested that a standard, traceable measurement method is needed

RESEARCH FOR A FAIR MEASUREMENT SYSTEM

The research that supports IMO participation

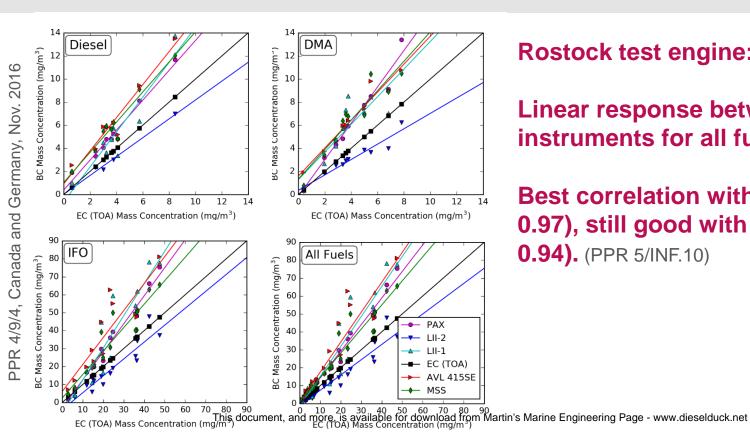


Sample conditioning and calibration

Calibrating the instruments with a common source (as in aviation) contributed to consistency among instrument responses.

Sample conditioning (catalytic stripping + sulphur adsorbers): 1) improved results on a qualitative level, 2) improved results on a quantitative level only after calibration, producing a modest impact

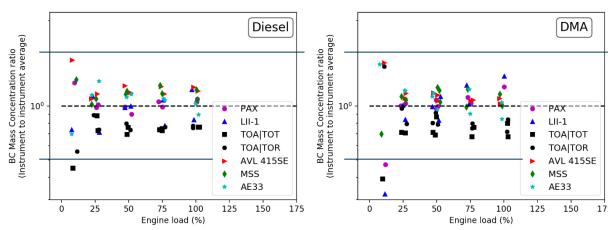
PPR 3, Canada, Presentation, Feb 2016



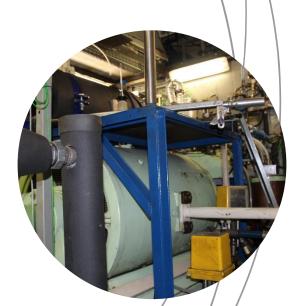
7 instruments based on different measurement principles:

FSN, LII, MSS, TOA (lab & field), MAAP & Aethalometer.

BC measurement instrument linear response

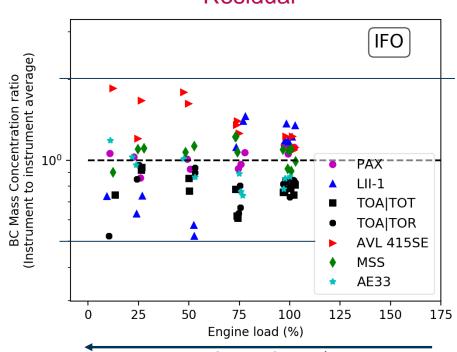

Rostock test engine:

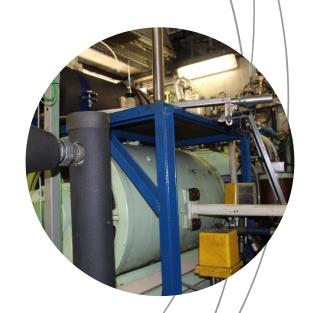
Linear response between the instruments for all fuel.


Best correlation with diesel (R^2 = 0.97), still good with IFO ($R^2 =$ **0.94).** (PPR 5/INF.10)

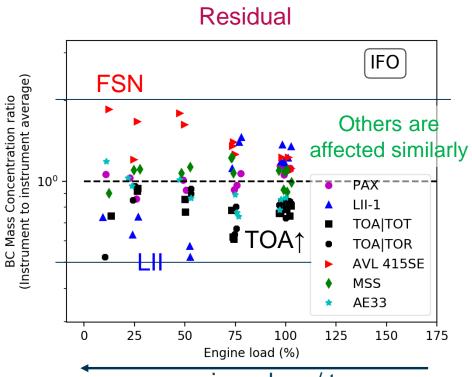
But do they really agree?

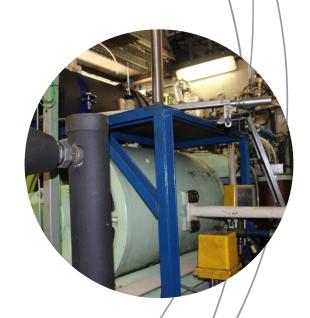
Distillates



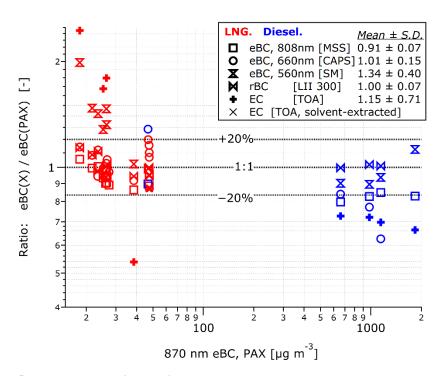

- → Reasonable agreement between instruments.
- → More scatter at the lowest load when there is more organic interference
- → TOA generally lower than other instruments

But do they really agree?


organic carbon / tar
This document, and more, is available for download from Martin's Marine Engineering Page - www.dieselduck.net

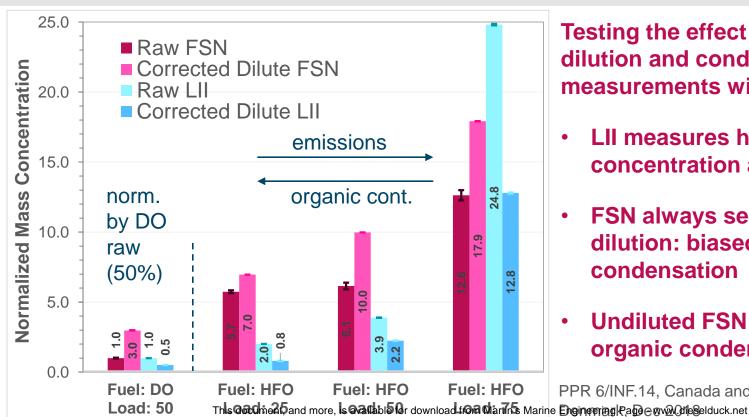

What's so special with residuals?

	HFO↓			
	Soot BC	Char BC	Tar brC	Soluble brC
Solubility ^a	Negligible	solubility in common sol	vents	Soluble
Light absorption	300-1	000 nm [detected as eBC]	300–600 nm
Chemical state	Contorted graphene layers		Amorphous	Distinct molecules
Carbon bonding	sp ² dominated		sp^2 and sp^3	sp ² and sp ³
Vapourization at b	$\sim 4000\mathrm{K}[\mathrm{EC},\mathrm{rBC}]$		$\sim 1000\mathrm{K}[\mathrm{EC}]$	< 600 K
Produced by	Flame synthesis	Fuel-droplet pyrolysis	Partial pyrolysis	Oxidation, pyrolysis,
Morphology	Aggregated spherules	Porous cenospheres	Spheres	Spheres or coatings
[]				



What's so special with residuals?

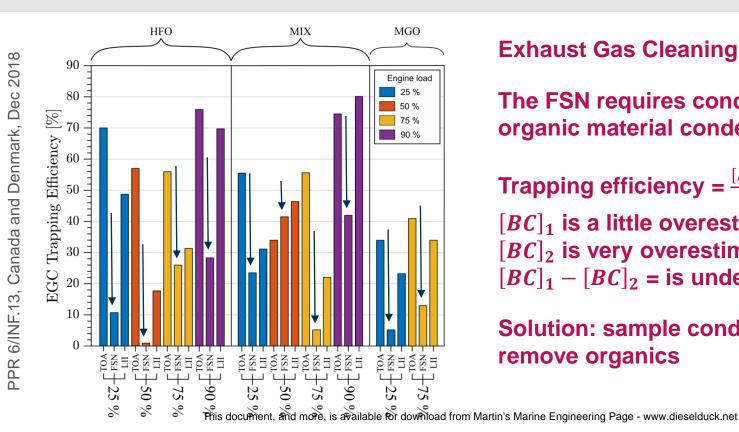
Low BC measurements (case: NG)


Special considerations also go into measuring very low concentrations, very humid exhaust or organic-rich emissions.

- IMO-selected FSN (SM in Figure) overestimates at low concentration (even above LOD)
- Conventional TOA becomes inaccurate with high organic content

Corbin et al. (2019), submitted.

Measurement methods matter


Testing the effect of ISO 8178 dilution and condensation on BC measurements with LII & FSN

- LII measures half the concentration after dilution
- **FSN** always sees more after dilution: biased by organic condensation
- Undiluted FSN is also biased by organic condensation

PPR 6/INF.14, Canada and

Measurement methods matter

Exhaust Gas Cleaning = Scrubber

The FSN requires conditioning when organic material condenses

Trapping efficiency = $\frac{[BC]_1 - [BC]_2}{[BC]_1}$

 $[BC]_1$ is a little overestimated $[BC]_2$ is very overestimated $[BC]_1 - [BC]_2$ = is underestimated

Solution: sample conditioning to remove organics

AN ISO STANDARD FOR MARINE **BC MEASUREMENTS**

A Canadian Perspective

Developing a fair measurement system for Canadians

- ISO/TC 70/SC8 (Exhaust gas emission measurement) develops and reviews ISO 8178 (and ISO 11614)
- <u>To influence</u> the development of a standardized BC measurement system at ISO, Canadians must form a Mirror Committee
- A Mirror Committee must have a minimum of 5 Canadian stakeholders willing to review the proposed standards
- Stakeholders can be from 1) industry/commerce, 2) government/ AHJ, 3) consumer/public interest, 4) labour/unions 5) academic/ research bodies, 6) standards application/dev org., 7) NGOs

Developing a fair measurement system for Canadians

Canadian Mirror Committees can bring value for Canada in some of the following categories:

- 1) Trade benefits
- 2) Advancement of the national economy
- 3) Assisting consumers
- 4) Benefiting the health, safety, and welfare of workers and the public
- 5) Supporting sustainable development
- 6) Support to government

Developing a fair measurement system for Canadians

Mirror Committee members:

- review, comment, vote on work items
- ensure the Canadian perspective is taken into account
- have a privileged influence on the work item proposal by Canada (to develop a measurement method for BC)

Small time commitment, great potential for benefits to Canadians and the world

Interested? stephanie.gagne@nrc-cnrc.gc.ca

Thanks to our collaborators

University of California Riverside (USA) Marena Ltd and University of Rostock (Germany) MAN Energy Solutions (Denmark) Alfa Laval Aalborg (Denmark) **University of British Columbia (Canada)** Test ship: Seaspan Ferries (Canada)

We also want to thank Transport Canada's **Environmental Policy & Marine Safety teams and,** especially, the Innovation Centre for the opportunities and funding.

THANK YOU

Stéphanie Gagné, PhD • Research Officer Stephanie.Gagne@nrc-cnrc.gc.ca

