WARTSILA 2-STROKE DUAL FUEL TECHNOLOGY RESPONDING TO CHANGING MARKET NEEDS

5TH CIMAC CASCADES, BUSAN MARCEL OTT

23.10.2014

1 © Wärtsilä 23 October 2014

This document, and more, is available for download from Martin's Marine Engineering Page - www.dieselduck.net Wärtsilä 2s Dual Fuel - 5th CIMAC CASCADES

Development drivers - environment

Development drivers – emission legislations

- NOx: targeting newbuilds, SOx: entire fleet
- Different introduction levels and dates
- Compliance with IMO Tier III NOx limits requires additional technology (EGR/SCR/...) or change to gas as fuel

Development drivers - production

- Fast increase in gas production during recent years
- US shale gas boom accelerating shift to gas
- Increase in gas production capacity and availability affecting fuel pricing

Development drivers – fuel prizes

 Parallel relative price development for liquid fuels, small spread across regions

 HFO/MDO prices tripled over last 10 years

year

WARTSIL

- No global market for gas fuel → prices coupled to liquid fuel price in Europe and Asia
- Price coupling history in USA due to gas availability

Gas fuel

Liquid fuels

This document, and more, is available for download from Martin's Marine Engineering Page - www.diesetdeck.net Id Bank Wärtsilä 2s Dual Fuel - 5th CIMAC CASCADES

Development history, 2-stroke

- First installation with 2-s low-pressure DF in 1973
- 29'000m3 LNGC 'MV Venator'
 - Sulzer 7RNMD90:
 - 90 cm bore

23 October 2014

6 © Wärtsilä

- 155 cm stroke
- 15'150 kW on diesel
- 10'450 kW on gas

WARTSI

Development history

Various gas and Dual Fuel concepts developed over time, both 2-s and 4-s

Current 2-stroke DF portfolio

Future 2-stroke Dual Fuel portfolio will cover a wide range of power outputs

Wärtsilä 2-Stroke Dual-Fuel E	ingines	rpm
Wärtsilä RT-flex50DF		99 - 124
Wärtsilä X52DF		82 - 105
Wärtsilä X62DF		80 - 103
Wärtsilä X72DF		69 - 89
Wärtsilä X82DF		65 - 84
Wärtsilä X92DF		70 - 80
Wärtsilä 2-Stroke Diesel Engi	nes	rpm
Wärtsilä Generation X		65 - 167
Wärtsilä RT-flex		61 - 127
1000	10000	100000
	Power, kW	

The 2-stroke DF concept

low pressure Dual Fuel

The Principle:

- Engine operating according to the Otto process
- Pre-mixed 'Lean burn' technology
- Low pressure gas admission at 'mid stroke'
- Ignition by pilot fuel in prechamber

The 2-stroke DF concept

low pressure Dual Fuel

'Pre-mixed lean-burn' combustion

Scavenging

Compression/ gas admission

Ignition → expansion

The main merits:

- Low pressure gas < 16 bar
 - less space…
 - less CAPEX, less OPEX...
 - less maintenance...
 - ...needed compared to high pressure gas equipment
- Lean Burn 'Otto' combustion
 - no additional technology...
 - No additional CAPEX...
 - No OPEX increase...
 - ...to reach world class emission levels

Technology – gas supply

Technology – gas admission

Gas admission valve

- 2 x GAV (Gas Admission Valve) per cylinder
- GAV actuated hydraulically
- Hydraulic power supply from exhaust valve servo oil system
- Precise gas admission control from full load to 'idling'
- Double walled piping for enhanced **safety**

Technology - pilot injection system

Low pressure DF – engine output

Technology

- Lower compression ratio of DF engine visible
- Lower compression pressure allows faster combustion in gas mode
- HRR phasing on gas can be advanced since not NOx dictated
- Shaping of rate of heat release improved in diesel mode, due to larger combustion chamber

2-stroke DF - total emission picture

- CO₂ and SO_x reduced in gas operation due to fuel composition
- 90 -25%) -25% PM further reduced by the DF -25% 80 technology with Lean-burn Otto-70 Emission values [%] combustion with pre-chamber 60 -37% 50 ignition 40 30 20 -85% 10 0 CO2 NO_{x} (Tier 3) Tier3 -96% NOx -99% and SOx SOx levels in -98% PM **ECA's fully** Diesel / HFO GD / Gas DF / Gas met!

100

16 © Wärtsilä 23 October 2014

What about methane slip?

- 'Methane slip' = THC emissions (Total Unburned Hydrocarbons)
- Methane is a 25 times stronger green house gas than CO₂
- Even with current THC levels, DF contributes positively to reduce the total CO₂ footprint compared to HFO
- Potential to further reduce the methane slip on 2-s DF

Total hydro carbon contribution to CO2 equivalent emissions

17 © Wärtsilä 23 October 2014

Application examples

175'000 m3 LNGC:

Twin propulsion for maximized redundancy

Application examples

1'400 TEU container feeder:

Simple system, no high pressure gas supply equipment needed

INTO the FUTURE - Baltic SO₂Iution

- Ship type 4 x 15,000 dwt Chemical Tankers, 14.5 kn (v_{DES})
- Owner Terntank Rederi AS, Sweden
- Shipyard AVIC Dingheng Shipbuilding Co, China
- Vessel delivery Q2, 2016
- Engine type
 Wärtsilä 5RT-flex50DF, CMCR of 5850 kW

First costal LNG Carrier with 2sDF engine

- Ship type 14,000 m3 LNG Carrier, 15 kn (v_{DES})
- Owner Zhejiang Huaxiang Shipping Co., Ltd
 - Private shipping company
 - Major player in LPG transportation market
 - One of the operators of LNG transportation in China domestic water
- Shipyard Qidong Fengshun Ship Heavy Co., Ltd,
- Vessel delivery 2015
- Engine type Wärtsilä 5RT-flex50DF, CMCR of 6000 kW

First LNG- fuelled Container Feeder Vessel for Baltic Sea operation

- Ship type 3 (+1+2) x 1400 TEU C/V, 18.5 kn (v_{DES}), iceclass 1A
- Owners GNS Shipping / Nordic Hamburg, Germany
- Charter Containerships, Finland
- Shipyard Yangzhou Guoyu Shipbuilding, China
- Vessel delivery Q3, 2016
- Engine type
 Wärtsilä 7RT-flex50DF
 CMCR of 10070 kW
 6L20DF generating set
 MCR of 1055 kW

First LNG Carrier with low-speed LOW-PRESSURE DF engines

 Ship type 	2 x 180,000 m3 LNG Carrier, 19.5 kn (v _{DES}) Twin-skeg, twin-screw
• Owners	SK Shipping, Korea Marubeni Corporation, Japan
• Charter	Total SA, France
Shipyard	Samsung Heavy Industries, Korea
Vessel delivery	Q1, 2017
Engine type	Wärtsilä 2 x 6X62DF main engines CMCR of 13450 kW each Wärtsilä 4 x L34DF gensets

The environmental benefits of LNG as fuel will pave the way of its success Depending on pricing, faster or slower....

Depending on gas pricing, gas can become the fuel of choice not only for ECA operation

The 2-s low pressure DF Technology is the optimum one for safe, reliable and economical ship propulsion with natural gas

THANK YOU!

WARTSILA MAR

Leading gas applications in the marine market

Marcel Ott GM, Dual Fuel Technology Development

n's Marine Engineering Page - www.dieselduck.net

WARTSI