The Propulsion and manoeverability of TUHH double- ended ferries

S.Krüger, T.Haack TU Hamburg Harburg; H.Cramer, Flensburger Schiffbau Gesellschaft.

- 1. Design Requirements
- 2. Preliminary Studies
- 3. Hullform/Propulsion
- 4. Manoevering
- 5. Active Pass
- 6. Conclusions

BCF- Requirements Super C-Class

The Super C Program

~BCFerries

High Lift Budders	Super C-Class Diesel-Electric CPP constant speed propulsion plant: document Reliability abilitif @w@y/Cl@a@@@t&e Engineering Page - v	Double-Ended based on C-Class Configuration
-docking		
performance		- transit/access

Design Constraints

- 1. Deck WL fixed (Berth)
- 2. Lane- Capacity 370 AEQ, 1500 Pax
- 3. L < 160 m, T> 5.75 m und < 6.00 m
- 4. Deplacement ca. 9600 t incl. Growth Margin 500t
- 4. 21 kn w. 4 Prime Movers, 20kn w. 3 und 18kn w. 2 incl. Fouling Margin
- 5. Diesel- Electric Plant
- 6. Turning Rate > 90 Deg./min in Turning Circle
- 7. Acceleration and Crash Stop specified for 21 kn
- 8. 20/20 Overshoot less than 12.5 Deg (1/2 IMO)
- 9. Comfort ABS COMF+ (abt. DNV COMF 1), despite Propeller- "Tree- Class" (1A- Super)

Some Double Ender Concepts

WEENTACHEE L=140m v=21kn Bow-Stern Propeller

SCHLESWIG-HOLSTEIN L=142m v=22kn 4 x Aquamaster CRP35

SKEENA QUEEN L=110m v=14kn 4 x Niigata ZP 24

Considerations for Propulsion

Requirement: Diesel- Electric plant

Prime- Mover: 4 or 6 (Costs vs. Redundancy)

Propulsors : 2 (Bow- Stern) or 4 outside CL Pods Pods FPPs -CPPs -

6 Prime- Movers or 4 Pods not competitive (costs too high)

→ Solution must be Bow/Stern- Propulsor, 4 Prime Movers

Problem: Wakefield 2-Prop. Concept

Center Skeg essential for course keeping Disturbes wake field heavily !

Example: Steering Fin DFDS

Power Sharing Considerations

Queen of Oak Bay (BCF)

Propeller Diameter: 3.80m P/D abt. 1.1 (MARIN) Propeller Diameter: 3.80m P/D abt. 1.67 (IOT) Super C-Class Propeller Diameter: 5.0m P/D abt.1.4 (WPM)

Power- Sharing makes sense only at high thrust loadings of stern propeller !

Stern Prop. To be designed sub- optimal: Larger Pitch !

Abt. 20% Power to be installed only for FWD Propulsor !

Consequences for Propulsion

- 1. Extremely large stern prop required to avoid power sharing (large thrust deduction)
- 2. Low resistance and thrust deduction required (system is senstive w. respect to thrust loading)
- 3. Pods not competitive as prop. torque too high
- 4. Pods strut resistance for large prop. too high.
- 5. Therefore Bow/Stern Prop as large CPP with constant revs.

BCF- Model Test Program

*≈*BCFerries

The Super C Program

2. Hydrodynamic Model Tests – Double Ended Concepts Original C-Class tested in 1973: new program developed w

Original C-Class tested in 1973; new program developed with several objectives:

- Develop a baseline dataset for assessment of SY offers: hull form known to be extremely efficient baseline but no data at larger displacements
- II. Explore new propulsion concepts; application of podded systems to a double-ender; cost-benefit evaluation

This document, and more, is available for download at Martin's Marine Engineering Page - www.dieselduck.net

BCF- Model Test Program

~BCFerries

The Super C Program

- 2. Hydrodynamic Model Tests Double Ended Concepts Program objectives (continued):
- III. Investigate power sharing issues (bow/stern);
- IV. Investigate appendage drag issues; propeller feathering; parasitic drag of rudders
- V. "Wave cuts" for calibrating wake wash

Model Tests IOT Queen of Oak Bay

Model Queen of Oak Bay /IOT)

Figure 5.1 : Power Sharing Results

Stock Propeller

Power Sharing Results

Lessons learned from St. John's Technische Universität Hamburg-Harburg

- 1. Existing Hull Form and Propulsion were not efficient (our point of view)
- 2. Our CFD Code was able to predict the wave pattern correctly despite numerical difficulties.
- 3. Our calculations for power sharing have shown to be sufficiently accurate.
- 4. The hull form should have extremely fine waterlines and buttocks at the ends.
- 5. The hull form should not disturbe the wake but must provide sufficient course stability.
- 6. The appendage resistance of the bow rudder is significant and must be optimized.
- 7. Hull should dynamically trim by stern to improve course This document, and more, is available for download at Martin's Marine Engineering Page - www.dieselduck.net stability.

Hull Form Design TUHH/FSG

Appendages w. WPM CPP and FSG-TF- Rudder

Frame Plan

HSVA- Model fitted with Final- Prop. and TF-Rudder

artin's Marine Engineering Page - www.dieselduck.net

Feathering Concept

HSVA- Model fitted with Stock- Prop. and Stock-Rudder, Trailing Edge Feathering

Trailing Edge Feathering required due to:

- Limited hub range (115 Deg)
- No clutch in shaft line
- Power sensitive to Bow Prop Rpm

TF- Rudder Optimization

High-Lift FSG-TF Rudder designed wit bulb and profiles optimized for reverse condition.

Hardware

CAD-Model

Model Tests HSVA

HSVA- Tests confirm Concept, CFD-Calculations and performance.

Problem: Scaling Laws, Featheringposition of Bow Prop.

BCF Wake Wash Requirements

Comparison shows TC – requirement clearly met.

Preparing Manoevering Simulations

Stock-Prop. (WPM/Nörönna) tested in HSVA-Cav. Tunnel in 2 **Quadrants and 10 Pitches.**

This document, and more, is available for download at Martin's Marine Engineering Page - Advertised Seatting Page - Advertised Se

0.4

06

Manoevering (1)

20/20ZIGZAG XB 1 pump DESIGN

Manoevering (2)

Acceleration Manoevre w. WPM- CPP, 4 MaK 8M32, STN Drive Motors and Propulsion Control System

Manoevering (3)

Crash-Stop Manoevre w. WPM- CPP, 4 MaK 8M32, STN Drive Motor, PCS and defeathered Bow Propeller Crash Stop DESIGN

Active Pass- Problem

- **Active Pass:**
- extreme Current up to 8 kn
- Difficult waters, many rocks
- Tranport- Canada requirement

Active Pass- Ability clear requirement of BCF.

How to demonstrate it ??? This document, and more, is available for download at Martin's Marine Engineering Page - www.dieselduck.net

Active Pass Full Mission Simulation

Both Models agree in manoevering performance.

- Active Pass shows no problems.
- **BCF** accepts performance.

This document, and more, is available for download at

TUHH/FSG- Manoevering model transferred to DMI- SIMFLEX.

Conclusions

- 1. The new concept is competitive.
- 2. New concepts require detailed investigations based on first principle design methods
- 3. New concepts require multi disciplinary engineering on a high level
- 4. Nothing is more practical than a goood theory !!