Wärtsilä Dual-Fuel LNGC March 2008

WÄRTSILÄ

Dual-Fuel-Electric LNGC

- Components
- Machinery Layout
- Fuel flexibility
- Sailing scenarios
- Components
- Machinery Layout
- Fuel flexibility
- Sailing scenarios
- Propulsion alternatives
 - OpEx
 - CapExEmissions
 - Fuel bunkering requirements
- Safety
- Reliability
- Redundancy
- Maintainability
- Crewing
- Summary
- Advantages and disadvantages of DF-M propulsion compared to DF-E.

Dual-Fuel-Mechanic LNGC

Comparison study

DF-M vs. DF-E

Dual-Fuel-Electric LNGC

Components

- Machinery Layout
- Fuel flexibility
- Sailing scenarios

Dual-Fuel-Mechanic LNGC

Comparison study

Components

- Machinery Layout
- Fuel flexibility
- Sailing scenarios
- Propulsion alternatives
 - OpEx
 - CapEx
 - Emissions
 - Fuel bunkering requirements
- Safety
- Reliability
- Redundancy
- Maintainability
- Crewing
- Summary
- Advantages and disadvantages of DF-M propulsion compared to DF-E.

DF-M vs. DF-E

DF-E – Propulsion Components

DF-E – Machinery layout (1/2)

DF-E – Fuel flexibility

DF-E propulsion plant has a complete fuel flexibility.

Gas, MDO or HFO can be selected (or re-selected) as source of energy in a fast, simple and reliable way without stopping the engines and without losses in engine speed and output.

Fuel selection can be manually or automatically controlled.

During laden voyage, ballast voyage or when at loading/unloading facilities the most economical or favourable operating mode can be chosen. Regional emission regulations, restrictions on heavier liquid fuel utilization, fuel bunkering requirements will have low or no impact on sailing route and schedule.

Power distribution calculation

Ship size	m ³	155 000	
Ship service speed	kn	19,5	
Engine configuration:		1x6L50DF + 3x12V50DF	
Propulsion power	kW	21600	
Ship service power	kW	1500	
Propulsion losses	kW	2400	(chain efficiency of 90%)
Ship service power losses	kW	46	(chain efficiency of 97%)
Total required mechanical power	kW	25546	

		All engines in operation	One 6L50DF engine not connected	One 12V50DF engine not connected
Total available power	kW	39900	34200	28500
Propulsion power without sea margin	kW	21600	21600	21600
Ship service power	kW	1500	1500	1500
Propulsion & Aux. gen. losses	kW	2446	2446	2446
Extra available power	kW	14354	8654	2954
Sea margin	kW	4536	4536	2954
Sea margin	%	21	21	14
Power reserve	kW	9818	4118	0
Missing power for contractual speed	kW	0	0	0
Power utilized for propulsion	kW	21600	21600	21600
Corresponding ship speed	kn	19,5	19,5	19,5

DF-E – Sailing scenarios (2/4)

1x6L50DF + 3x12V50DF

All engines in operation

DF-E – Sailing scenarios (3/4)

1x6L50DF + 3x12V50DF

One 6L50DF not connected

The vessel maintain contractual sailing speed of 19,5 kn

DF-E – Sailing scenarios (4/4)

1x6L50DF + 3x12V50DF

One 12V50DF not connected

The vessel maintain contractual sailing speed of 19,5 kn

Dual-Fuel-Electric LNGC

- Components
- Machinery Layout
- Fuel flexibility
- Sailing scenarios

Components

- Machinery Layout
- Fuel flexibility
- Sailing scenarios

Propulsion alternatives

- OpEx
- CapEx
- Emissions
- Fuel bunkering requirements
- Safety
- Reliability
- Redundancy
- Maintainability
- Crewing
- Summary
- Advantages and disadvantages of DF-M propulsion compared to DF-E.

Dual-Fuel-Mechanic LNGC

Comparison study

DF-M vs. DF-E

11 © Wärtsilä

DF-M – Propulsion Components

155'000 m³ dual-fuel-electric LNG carrier (4x Wärtsilä 8L50DF + 2x Wärtsilä 9L32)

DF-M – Machinery layout

155'000 m³ dual-fuel-mechanic LNG carrier (4x Wärtsilä 8L50DF + 2x Wärtsilä 9L32)

DF-M – Fuel flexibility

DF-M propulsion plant has a complete fuel flexibility.

Similarly to DF-E plant, gas, MDO or HFO can be selected with the same easiness and reliability.

Engines don't need to be stopped and do not loose power or speed when changing operating mode. Clutch-in operation, rump-up and rump-down periods must be performed in liquid fuel mode for ensuring the fastest and most reliable result.

Power distribution calculation

Ship size	m ³	155 000
Ship service speed	kn	19,5
Engine configuration:		4x8L50DF
Propulsion power	kW	21600
Ship service power	kW	1500
Propulsion losses	kW	668
Ship service power losses	kW	79
Total required mechanical power	kW	23847

(chain efficiency of 97%) (chain efficiency of 95%)

		All engines in operation	One 8L50DF engine not connected
Total available power	kW	30400	22800
Boost from booster motor	kW	-	2000
Propulsion power without sea margin	kW	21600	21600
Ship service power	kW	1500	1500
Propulsion & Aux. gen. losses	kW	747	747
Extra available power	kW	6553	953
Sea margin	kW	4536	953
Sea margin	%	21	4
Power reserve	kW	2017	0
Missing power for contractual speed	kW	0	0
Power utilized for propulsion	kW	21600	21600
Corresponding ship speed	kn	19,5	19,5

DF-M – Sailing scenarios (2/3)

4x8L50DF

All engines in operation

DF-M – Sailing scenarios (3/3)

4x8L50DF

One 8L50DF not in operation Booster from booster motor

40000

The vessel maintain contractual sailing speed of 19,5 kn

Dual-Fuel-Electric LNGC

- Components
- Machinery Layout
- Fuel flexibility
- Sailing scenarios

Dual-Fuel-Mechanic LNGC

Comparison study

Components

- Machinery Layout
- Fuel flexibility
- Sailing scenarios

Propulsion alternatives

- OpEx
- CapEx
- Emissions
- Fuel bunkering requirements
- Safety
- Reliability
- Redundancy
- Maintainability
- Crewing
- Summary

 Advantages and disadvantages of DF-M propulsion compared to DF-E.

Comparison study (1/16)

Propulsion alternatives:

- DF-Electric
- DF-Mechanic
- Two-stroke + reliquefaction
- Two-stroke gas injection engine
- Steam Turbine
- Reheated Steam Turbine
- Gas Turbine + WHR

Diesel engine alternatives – CapEx simple comparison

DF-Electric

TOTAL	23,5 M€
Propellers, shafts, gearboxes	1,5 M€
Electric Drive	9 M€
1x6L50DF+3x12V50DF	13 M€

DF-Mechanic

TOTAL	19,5 M€
2 sets of CPP+shafts+Gearboxes	6 M€
4x8L50DF + 2x9L32 (Aux)	13,5 M€

Two-stroke + reliquefaction

TOTAL	23,5 M€
Propellers and shafts	1 M€
Reliquefaction unit	10 M€
Generating sets (4x8L32)	4 M€
2x6S70ME	8,5 M€

Two-stroke gas injection engine

TOTAL	23,5 M€
Propellers and shafts	1 M€
Gas compressor	9 M€
Generating sets (4x8L32)	4 M€
Upgrade to Gas-Injection system	1 M€
2x6S70ME	8,5 M€

Note: all values are estimated

Comparison study (3/16)

Data for the calculation

Cargo capacity	155 000 m ³
Boil-off rate, laden	0,13 %
Boil-off rate, ballast	40 % of laden
Leg length	6500 nm
Service speed, laden	19,5 kt
Service speed, ballast	19,5 kt
Loading time	15 h
Discharging time	15 h
Value NBOG	2,5 US / mmBTU
Value FBOG	8,29 US / mmBTU
Price HFO	470 US / ton equal to 12,3 US / mmBTU
Price MDO	780 US / ton equal to 19,3 US / mmBTU
Price MGO	820 US / ton
Price lube oil	490 US / ton
Price cylinder oil (two-stroke engine)	640 US / ton
Propeller shaft power, laden	25,0 MW
Propeller shaft power, ballast	24,0 MW
Ship service power, laden	1,4 MW (for steam turbine vessel)
Ship service power, ballast	1,3 MW (for steam turbine vessel)
Maintenance costs	
DF installation	4,00 US / MWh
Two-stroke + reliq. Installation	1,50 US / MWh
Four-stroke auxiliary engines	4,00 US / MWh
Ultra Steam turbine installation	0,80 US / MWh
Ultra Steam generator installation	0,70 US / MWh
Gas turbine installation	4,50 US / MWh
WHR installation (gas turbine)	0,70 US / MWh

Comparison study (4/16)

Alternatives' efficiency chains

DF-Electri	с	DF-Mechar	nic	2-Stroke + reliq. 2-Stroke gas diesel engine		Steam turbine		Reheated Steam turbine		Gas turbine combined cycle			
Fuel	100%	Fuel	100%	Fuel	100%	Fuel	100%	Fuel	100%	Fuel	100%	Fuel	100%
DF engine	48%	DF engine	48%	2-stroke engine	49%	2-stroke engine	49%	Boiler	89%	Boiler	89%	GT	44%
Alternator	97%	Gearbox	98%	Shaftline	98%	Shaftline Shaftline	98%	Steam turbine	34%	Ultra Steam turbine	39%	Alternator	97%
Trafo & Converter	98%	Shaftline	98%					Gearbox	98%	Gearbox	98%	Trafo & Converter	98%
El. propulsion motor	98%							Shaftline	98,0%	Shaftline	98,0%	El. propulsion motor	98%
Gearbox	99%											Gearbox	98%
Shaftline	98%											Shaftline	98%
Propulsion power efficiency	43,4%	Propulsion power efficiency	46,1%	Propulsion power efficiency	48,0%	Propulsion power efficiency	48,0%	Propulsion power efficiency	29 ,1%	Propulsion power efficiency	32, 9%	Propulsion power efficiency	39,4%

Fuel	100%												
Auxiliary power	48%	DF engine	48%	Auxiliary engine	45%	Auxiliary engine	45%	Boiler	89%	Boiler	89%	Auxiliary power	44%
Alternator	97%	Gearbox	98%	Alternator	96%	Alternator	96%	Aux. steam turbine	34%	Aux. steam turbine	34%	Alternator	97%
		Alternator	97%					Gearbox	98%	Gearbox	98%		
						Alternator	96%	Alternator	96%				
Electric power efficiency	46,6%	Electric power efficiency	45,6%	Electric power efficiency	43,2%	Electric power efficiency	43,2%	Electric power efficiency	28,5%	Electric power efficiency	28,5%	Electric power efficiency	42,7%

Comparison study (5/16)

Energy consumption

Energy consumption [MJ / s]

WÄRTSIL

Comparison study (6/16)

Fuel Flexibility

Possibility of each alternative to be operated on different fuels

- DF-Electric
- DF-Mechanic
- Two-stroke + rel.
- Two-stroke gas injec.
- Steam Turbine
- Reheated Steam Turbine
- Gas Turbine + WHR

Comparison study (7/16)

Reasonable fuel selection

	Usual operating on:	Reason for fuel selection:
DF-Electric	Natural-BOG + Forced-BOG	High efficiency in gas mode, cleanest energy source.
DF-Mechanic	Natural-BOG + Forced-BOG	High efficiency in gas mode, cleanest energy source.
Two-stroke + rel.	HFO	Only possibility. MDO not profitable.
Two-stroke gas injec.	Natural-BOG + HFO	High percentage of HFO always needed. If NBOG+FBOG selected, high amount of gas to be compressed.
Steam Turbine	Natural-BOG + Forced-BOG	No significant difference. Gas is the cleanest source of energy.
Reheated Steam Turbine	Natural-BOG + Forced-BOG	No significant difference. Gas is the cleanest source of energy.
Gas Turbine + WHR	Natural-BOG + Forced-BOG	MGO utilization not profitable.

WÄRTSILÄ

Comparison study (8/16)

Operating expenses per roundtrip Maximization of gas use

This document, and more satisfies available for download from Martin's Marine Engineering Page - www.dieselduck.net

Comparison study (9/16)

Operating expenses per roundtrip Reasonable fuel selection

This document, and more, s available for download from Martin's Marine Engineering Page - www.dieselduck.net

Comparison study (10/16)

Very low emission levels:

- Clean burning
- Relatively free of contaminations
- Methane contains the highest amount of hydrogen per unit of energy of all fossil fuels -> lower CO_2 emissions
- Lean burn Otto process provides very low NO_x emissions

Natural gas compared to diesel:

- CO emissions reduction approx. 75%
- CO_2 emissions reduction approx. 20%
- NO_x emissions reduction approx. 80%
- No SO_v emissions
- Benzene emissions reduction approx. 97%
- No lead emissions
- Less particle emissions
- No visible smoke

Comparison study (11/16)

Emissions Maximization of gas use Reference values 120% S0x N0x **CO2** 100% 80% Emissions [-] 60% 40% 20% 0% Two-Stroke + **DF-Electric** Steam Turbine Gas turbine + WHR Reliquefaction Gas Gas Gas HFO Two-Stroke gas **Reheated Steam DF-Mechanic** Injection Turbine

This document, and more, is available for download from Martin's Marine Engineering Page - www.dieselduck.net

WARTS

Comparison study (12/16)

Emissions

This document, and more savailable for download from Martin's Marine Engineering Page - www.dieselduck.net

Comparison study (13/16)

Yearly bunkering requirements Maximization of gas use

Comparison study (14/16)

Yearly bunkering requirements Reasonable fuel selection

Safety, reliability and redundancy

A safety concept has been developed by Wärtsilä for the applications of dual-fuel engines on LNGCs.

The safety concept describes the required measures to make dual-fuel LNGCs as safe as steam turbine LNGCs.

The safety concept has been approved in principle by all major classification societies.

Additionally, many Hazld, HazOp and FMEA analyses have been successfully carried out. Low pressure gas admission ensures safe operation on gas in every sailing condition.

The dual-fuel engines have inherited reliability from the diesel engines from which they are derived.

Additionally, experience have been gained through the field operation of already sailing Dual-Fuel-Electric LNGC.

Electric propulsion systems featuring multiple generating sets are state-of-the-art with respect to redundancy.

Dual-Fuel-Mechanic alternative imply a high level of redundancy as well, thanks to the multiple engine installation.

Comparison study (16/16)

Maintainability and crewing

Dual-fuel engines require substantially less maintenance than diesel engines when running predominantly on gas.

Additionally, the Dual-Fuel machinery concept allows for single engines to be taken out of operation without significantly affecting the ship's performance. Dual-fuel engines can be operated by regular diesel engine crews with decent training.

No exceptional skills are required as no high pressure steam/gas is present onboard.

Comparison study - Summary

5Good 🙂 1Bad 🙁	Two Stroke + reliquefaction	Two Stroke gas diesel	Steam Turbine	Reheated Steam turbine	Dual-Fuel Electric	Dual-Fuel Mechanic	Gas Turbine + WHR
CapEx	3	4	5	4	3	4	2
OpEx	1	4	2	3	4	5	3
Emissions	1	3	1	2	5	5	3
Fuel bunkering req.	1	3	5	5	5	5	5
Safety	4	1	4	4	5	5	3
Reliability	4	3	5	5	4	4	4
Redundancy	3	3	3	3	5	5	3
Maintainability	3	3	5	5	3	3	4
Crewing	5	4	3	3	5	5	4
Total	25	28	33	34	39	41	31

Dual-Fuel-Electric LNGC

- Components
- Machinery Layout
- Fuel flexibility
- Sailing scenarios

Dual-Fuel-Mechanic LNGC

Comparison study

Components

- Machinery Layout
- Fuel flexibility
- Sailing scenarios
- Propulsion alternatives
 - OpEx
 - CapEx
 - Emissions
 - Fuel bunkering requirements
- Safety
- Reliability
- Redundancy
- Maintainability
- Crewing
- Summary

DF-M vs. DF-E

 Advantages and disadvantages of DF-M propulsion compared to DF-E.

Dual-Fuel-Electric has...

- High efficiency with engines running always at high loads
- The constant load entails less thermal load and, therefore, less wear of components
- Fixed pitch propeller can be used with consequent reduction in capital cost and in propeller maintenance
- Auxiliaries engines are not needed

- Full torque at zero load given by electric motors
- Reduction gear doesn't need any clutch with derived more simple construction and less maintenance required
- The maintenance can be carried out in an easier way as engines are not coupled with the reduction gear
- Very good operational characteristics at ice on in difficult sea conditions

Economical advantages

Operational advantages

DF-Electric Vs. DF-Mechanic (2/2)

Dual-Fuel-Mechanic has...

- High efficiency of the complete propulsion system with consequent lower OpEx
- Smaller investment cost. Electric motors, frequency converters, transformers and large switchboards are not needed
- Save in space and weight as all electric drives are not needed. Higher cargo capacity
- At harbour auxiliary engines can run at high load with high efficiency and low SFOC

- Smaller propulsion engines are needed. The maintenance can be faster and cheaper
- When an engine is under maintenance, PTO can be used as boost
- Simpler and smaller automation system.
- Simple power management system for auxiliary engines

Economical advantages

Operational advantages

THANK YOU FOR YOUR ATTENTION!

For more information, please contact your local Wärtsilä representative or visit wartsila.com

