PROPERTIES OF CONDUCTORS

SIZE AWG OR	AREA CIRCULAR MILS	CONCENTRIC-LAY STRANDED CONDUCTORS		BARE CONDUCTORS		D. C. RESISTANCE OHMS/M. FT. AT 75°C OR 167°F		
			DIAM.		AREA SQUARE INCHES	COPPER		ALUMINUM
МСМ		QUANTITY	EACH WIRE, INCHES	DIAM., INCHES		COATED COND.	UNCOATED COND.	
14	4110	7	.024	.073	.004	3.14	3.26	5.17
12	6530	7	.030	.092	.006	1.98	2.05	3.25
10	10380	7	.038	.116	.011	1.24	1.29	2.04
8	16510	7	.049	.146	.017	.778	.809	1.28
6	26240	7	.061	. 184	.027	.491	.510	.808
4	41740	7	.077	. 232	.042	.308	.321	.508
3	52620	7	.087	. 260	.053	.245	.254	.403
2	66360	7	.097	. 292	.067	.194	.201	.319
1	83690	19	.066	. 332	.087	.154	.160	.253
0	105600	19	.074	.373	.109	.122	.127	.201
00	133100	19	.084	.419	.138	.967	.101	.159
000	167800	19	.094	.470	.173	.0766	.079	.126
0000	211600	19	.106	.528	.219	.0608	.0626	.100
250 300 350 400 500	$\begin{array}{c} 250000\\ 300000\\ 350000\\ 40000\\ 50000\end{array}$	37 37 37 37 37 37	.082 .090 .097 .104 .116	.575 .630 .681 .728 .813	.260 .312 .364 .416 .519	.0515 .0429 .0367 .0321 .0258	.0535 .0446 .0382 .0331 .0265	.0847 .0707 .0605 .0529 .0424
600	$\begin{array}{c} 600000\\ 750000\\ 1000000\\ 1500000\\ 2000000\end{array}$	61	.992	.893	.626	.0214	.0223	.0353
750		61	.111	.998	.782	.0171	.0176	.0282
1000		61	.128	1.15	1.04	.0129	.0132	.0212
1500		91	.128	1.41	1.57	.0085	.0088	.0141
2000		127	.126	1.63	2.09	.0064	.0066	.0106

Reprinted with permission from NFPA 70-1984, National Electrical Code», Copyright® 1983, National Fire Protection Association, Quincy, Massachusetts 02269.

This document, and more, is available for download from Martin's Marine Engineering Page - www.dieselduck.net

ELECTRICAL FORMULAS FOR CALCULATING AMPERES, HORSEPOWER, KILOWATTS, AND KVA

	DIDECT	ALTERNATING CURRENT					
TO FIND	CURRENT	SINGLE PHASE	TWO PHASE FOUR WIRE	THREE PHASE			
AMPERES	HP × 746	$HP \times 746$	$HP \times 746$	HP × 746			
WHEN "HP" IS KNOWN	E × %EFF	E × %EFF × PF	$E \times % EFF \times PF \times 2$	E × %EFF × PF × 1.73			
AMPERES	KW $ imes$ 1000	$KW \times 1000$	$KW \times 1000$	$KW \times 1000$			
WHEN "KW" IS KNOWN	E	E × PF	$E \times PF \times 2$	E × PF × 1.73			
AMPERES		KVA $ imes$ 1000	$KVA \times 1000$	KVA × 1000			
WHEN "KVA" IS KNOWN	·	E	E × 2	E × 1.73			
	Ε×Ι	$E \times I \times PF$	$E \times I \times PF \times 2$	E × I × PF × 1.73			
KILUWATIS	1000	1000	1000	1000			
KILOVOLT-		Ε×Ι	$E \times I \times 2$	E × I × 1.73			
AMPERES "KVA"	1000		1000	1000			
	$E \times I \times %EFF$	$E \times I \times %EFF \times PF$	$E \times I \times $ %EFF \times PF \times 2	E × I × %EFF × PF × 1.73			
HURSEPUWER	746	746	746	746			
OUTPUT POWER USED (WATTS) KW							
INPUT POWER FACTOR = PF = APPARENT POWER KVA							
NOTE: DIRECT CURRENT FORMULAS DO NOT USE (PF, 2, OR 1.73) SINGLE PHASE FORMULAS DO NOT USE (2 OR 1.73) TWO PHASE-FOUR WIRE FORMULAS DO NOT USE (1.73) THREE PHASE FORMULAS DO NOT USE (2)							

This document, and more, is available for download from Martin's Marine Engineering Page - www.dieselduck.net

OHM'S LAW

THE RATE OF THE FLOW OF THE CURRENT IS EQUAL TO ELECTROMOTIVE FORCE DIVIDED BY RESISTANCE.

ELECTROMOTIVE FORCE = VOLTS = "E" CURRENT = AMPERES = "I" RESISTANCE = OHMS = "R"

SERIES CIRCUIT

A SERIES CIRCUIT IS A CIRCUIT A PARALLEL CIRCUIT IS A THAT HAS ONLY ONE PATH THROUGH CIRCUIT THAT HAS MORE THAN WHICH THE ELECTRONS MAY FLOW. ONE PATH THROUGH WHICH THE NOTE: "T" STANDS FOR TOTAL. ELECTRONS MAY FLOW.

FT = E1 + E2	+	E 3
--------------	---	-----

II = I1 = I2 = I3

RT = R1 + R2 + R3

		VOLTS
AMPERES	=	
		OHMS

PARALLEL CIRCUIT

ΕT	=	E 1	Ξ	E 2	Ξ	E 3
IT	=	I 1	+	I 2	+	I 3
1		1		1		1
RT	=	R1	+	R2	+	R3

NOTE: FOR A PARALLEL CIRCUIT HAVING ONLY TWO RESISTORS, THE FOLLOWING FORMULA MAY BE USED.

$$RI = \frac{R1 \times R2}{R1 + R2}$$

This document, and more, is available for download from Martin's Marine Engineering Page - www.dieselduck.net