**İ.T.Ü. Faculty of Naval Architecture and Ocean Engineering** Methods of Ship Production - GEM 314-E

## **Welding in Shipbuilding**

Week 2

This document, and more, is available for download from Martin's Marine Engineering Page - www.dieselduck.net

A V Odebeer 2000

•When the atoms at the edge of one piece of metal come close enough to the atoms at the edge of another piece of metal for inter-atomic interaction to develop, the two pieces become one. This is known as welding process.

•Most welding processes apply significant heat to the base material. This heat is a means to bring the atoms at the edge of one piece of material close enough to the atoms of another piece for inter-atomic interaction.

•As hot metal tends to oxidize, sufficient protection from oxidation must be provided by the welding process to prevent this detrimental reaction with ambient oxygen.

•The welding process to be applied varies with the material and thicknesses.

•The term "arc welding" applies to a large group of welding processes that use an electric arc as the source of heat. The arc is struck between the work piece and the tip of electrode. Filler metal may be used.

•The welding current is conducted through consumable electrodes which take the form of wire or rod, or non-consumable electrodes, consisting of carbon or tungsten rods.

#### **WELDING POSITIONS**



#### **/ELDING POSITIONS**









ASME :1F EN :PA

ASME :1G EN :PA

.

ASME :2F EN :PB









ASME :2G EN :PC

ASME :2F EN :PB

ASME :2G EN :PC

ASME :2F EN :PB



.



ASME :3G EN :PG (down) PF (up)



ASME :5G EN :PG (down) PF (up)



ASME :5F EN :PG (down) PF (up)



ASME :4G EN :PE ASME :4F EN :PD ASME :6G EN :J-L045 (down) H-L045 H-L045 H-L045 - www.dieselduck.net

#### **Shielded Metal Arc Welding (SMAW)**



urce: Adapted from Linnert, G. E., 1994, Welding Metallurgy, 4th ed., Miami: American Welding Society, Figure 6.8

•SMAW is performed by a consumable electrode covered by flux which provides shielding of the welded area. It is also known as "stick welding."

•The electrode consists of a wire core surrounded by silicate binders and powdered material such as fluorides, carbonates, metal alloys and cellulose.

•The covering serves as a source of arc stabilizers and vapors to displace air as well as metal and slug to protect, support and insulate the hot weld metal.

•Electrodes are available in diameter from 2 mm. to 8mm. The smaller diameter are used with low currents for joining thin sections, limited access work and welding in vertical and overhead welding positions.

•The amperage per mm<sup>2</sup> of the electrode cross sectional area, is termed "current density" and must be optimized.

•SMAW process yields a deposition efficiency of less than 60 per cent. Splatter is relatively high.

#### Submerged Arc Welding (SAW)



•SAW effects the joining of metal by an arc formed between a bar metal electrode and the work piece. The process involves submerging the welding arc beneath granular flux particles.

•The flow protects the arc and molten weld metal from ambie atmosphere. A part of the flux is melted in the process. The rest cleaned and re-used.

•The welding positions best suited to SAW are the flat positions fillet and grove welds. It can be also used in horizontal butt welds.

•The electrode diameters range between 1.5 to 6 mm. Due to the high current and deep penetrations it is better suited to welding section thicker than 6 mm. Electrodes are in the form of coiled wire that fee into the arc.

•High current densities are used to obtain high yield deposition rat and deep penetration. It can also be used with low current densiti with relatively low deposition rates and penetrations.

•SAW can be performed mostly with single electrodes, but it can all be used with two arcs known as "tandem arc process". Tandem a process is used in mechanized and automated welding to jo materials, thicker than 12 mm as many as five electrodes feeding in the same weld pool is need.

Source: Adapted from Kielhorn, W. H., 1978, Welding Guidelines with Aircraft Supplement, Englewood, Colorado: Jepperson Sanderson, Figure 5, 44 Englewood, Colorado: Jepperson Sanderson, Figure 5, 44 This document, and more, is available for download from Martin's Marine Engineering Page - www.dieselduck.net

#### **Gas Metal Arc Welding (GMAW)**



*Source:* Adapted from Linnert, G. E., 1994, *Welding Metallurgy*, 4th ed., Miami: American Nelding Society, Figure 6.12.

•GMAW involves the use of a metal arc and consumable electrode with internally added shielding gas. It is also known as MIG or wire feed welding.

•It is a very versatile process with a wide selection of arc modes, electrode sizes and shielding gas mixtures, and can be use welding meta with thickness 0.5 mm and above.

•With the proper procedure, welding can be performed in all positions.

•The shielding gas is often  $CO_2$  mixed with argon or several added gass. Small quantities of  $O_2$  (up to 5%) are sometimes mixed with argon.

•GMAW employs either a solid electrode wire or an electrode with a co of powdered metal. Electrode sizes range from 0.5 mm to 3.2 mm. Spoc weights vary from 0.5 to 27 kg.

•The basic equipment consists of a welding gun (air or water cooled), electrode, an electrode feed unit, welding control, a power supply, shielding gas, cables and hoses, and in case of water cooled torches, a water circulation system.

•GMAW can be used as semi-mechanised, mechanised, automatic and robotic applications.

•Several types of metal transfer variations can be used. These include spray, globular, short circuiting, pulsed arc, and high deposition and buried arc metal transfer modes.

#### Gas Metal Arc Welding: Spray Metal vs Granular Metal Transfer Mode



*Source:* Adapted from Kielhorn, W. H., 1978, *Welding Guidelines with Aircraft Supplement*, inglewood, Colorado: Jepperson Sanderson, Figure 5.26.



*Source:* Adapted from Kielhorn, W. H., 1978, *Welding Guidelines with Aircraft Supplement*, Englewood, Colorado: Jepperson Sanderson, Figure 5.28.

#### Flux Cored Arc Welding (FCAW)



•FCAW uses the same type of power sources, with feeders and welding guns as GMAW. However, FCAW uses a tubular electrode with a core containing flux. A variation, self-shielde flux cored arc welding (FCAW-S) obtains its shielding gas from the electrode.

•The flux in the core stabilised the arc, and contains deoxidisers, scavengers, slag and vapour-forming ingridents. Gas shielded FCAW electrodes must be supplemented with shielding gas supply (Typically  $CO_2$ ).

•Electrode sizes range from 0.5 to 4 mm.

•FCAW require more electrod extention than GMAW due to the higher current density requirement. If the extention is not sufficient it can create porosity in the weld.

•Due to the higher current density deposition rates in FCAW is higher than GMAW.

•The presence of flux and consequential slug provide further protection. FCAW can be used outdoors.

•FCAW is suitable for mechanisation and automation.

#### **Electrogas Welding (EG or EGW)**



•EGW is a mechanized arc welding process that utilizes either flux cored or solid electrodes. The shielding gas may be applied from external source or produced by flux or both.

•EGW is used to hold thick sections in vertical position.

•EG machines are usually automatic to maintain constant arc and vertical movement of welding head, and can be used to weld sections up to 76mm. thick, using single electrode.

•EGW machines create as high as 400A with solid electrode and 750A with flux cored electrodes. Deposition rates are typically in the range of 7 to 13 kg/hr.

•EGW has the capacity to produce square grove and single–V butt joints. Single edge preparation minimizes the joint preparation costs. Weld transverse shrinkage is uniform, hence the joints are essentially free of angular distortion.

•Due to high current density EGW has high deposition rates.

#### Gas Tungsten Arc Welding (GTAW)



•GTAW incorporates the use of a nonconsumable tungsten electrode which is shielded from atmosphere by externally added gas. Welds can be made with or without the filler metal. It is also known as ."TIG welding"

•GTAW can be used in all welding positions and can be used for very thin materials (less than 1mm.). It is suitable for automated and robotic applications.

•The shielding gas in GTAW is usually inert (i.e. it does not participate in the chemical reaction). Argon or Argon–Helium mixtures are usually used. Since some chemical reactions are desirable sometimes hydrogen or nitrogen is added.

•The greatest disadvantage of GTAW is its low productivity.

### Stud Welding (SW)





•SW is used to join innumerable devices (usually fasteners) to the base metal. This process utilizes an arc struck between a metal stud and the work piece and is applied without filler material, and with or without shielding gas. Pressure is applied when the faying surfaces are adequately heated.

•Studs are usually surrounded by graphite or ceramic ferrules for partial shielding.

•The arc created by SW creates molten metal and application of pressure creates a uniform cross section. For a stud of 9.5 mm. typical arc time is 1/3 second.

•SW skill requirement is minimal and the process lends itself to robotic welding.

•A limitation of the process involves the use of brittle base metal such as cast iron, in which metal shrinkage can not be tolerated and heat affected zone cracking occurs.

#### **Plasma Arc Welding: Transferred or non-transferred Arc**



This document, and more, is available for download from Martin's Marine Engineering Page - www.dieselduck.net

#### apabilities of Joining rocesses

|                   |                        | 100  | i shi |         |                  |         |             |             |     |     |    | P           | oces        | ses* |             |             |    |   |    |    |     |             |    |      |
|-------------------|------------------------|------|-------|---------|------------------|---------|-------------|-------------|-----|-----|----|-------------|-------------|------|-------------|-------------|----|---|----|----|-----|-------------|----|------|
| Material          | Thickness <sup>†</sup> | SMAW | S A W | G M A W | F<br>C<br>A<br>W | G T A W | P<br>A<br>W | E<br>S<br>W | EGW | RW  | FW | 0<br>F<br>W | D<br>F<br>W | FRW  | E<br>B<br>W | L<br>B<br>W | TB | F | R  | l  | D   | I<br>R<br>B | DF | 0    |
| Carbon            | S                      | χ‡   | Х     | Х       |                  | X       |             |             |     | X   | X  | X           |             |      | Y           | v           | v  | ~ | v  | U  | D   | D           | D  | 9    |
| steel             | 1                      | X    | X     | x       | °x               | x       |             |             |     | x   | x  | x           |             | x    | Ŷ           | Ŷ           | Ŷ  | Ŷ | Ŷ  | X  | X   | X           | X  | X    |
|                   | М                      | X    | х     | x       | х                |         |             |             |     | x   | x  | x           |             | x    | Ŷ           | Ŷ           | Ŷ  | Ŷ | Ŷ  | *  | ×   | X           | X  | X    |
|                   | Т                      | X    | х     | x       | X                |         |             | x           | x   |     | x  | x           |             | x    | Ŷ           | ^           | ^  | Ŷ | *  |    |     |             | X  |      |
| Low-alloy         | S                      | X    | Х     | X       | de               | X       | 1           |             |     | X   | X  | X           | X           | ^    | Ŷ           | ×           | v  | X | ~  |    |     |             | X  |      |
| steel             | 1                      | X    | х     | x       | х                | x       |             |             |     | x   | x  | -           | x           | ×    | Ç           | Ŷ           | Û, | × | ×. | ×  | ×   | ×           | X  | X    |
|                   | М                      | X    | x     | x       | х                |         |             |             |     | x   | x  |             | Ŷ           | Ŷ    | Ŷ           | ×           |    | X | X  |    |     |             | X  | X    |
| - Colors in the   | Т                      | x    | X     | x       | х                |         |             | x           |     |     | x  |             | Ŷ           | Ŷ    | Ŷ           | *           | ×  | × | X  |    |     |             | X  |      |
| Stainless         | S                      | X    | X     | X       |                  | X       | X           |             | 1.0 | x   | X  | ×           | ×           | ^    | ~           | v           | A  |   |    | -  |     | X           |    | 22.1 |
| steel             | 1                      | X    | х     | x       | х                | x       | x           |             |     | x   | x  | -           | Ŷ           | Y    | Ŷ           | ×           | ×  | X | X  | X  | X   | Х           | X  | X    |
|                   | М                      | x    | x     | x       | x                |         | x           |             |     |     | x  |             | Ŷ           | Ŷ    | Ĵ           | ~           | A  | X | X  |    |     |             | Х  | X    |
|                   | Т                      | x    | х     | x       | x                |         |             | x           |     |     | x  |             | Y           | ×    | ÷           | ~           | ×  | X | X  |    |     |             | X  |      |
| Cast iron         | 1                      | X    |       |         |                  | 1       | PIL I       |             |     | 108 | ~  | Y           | ^           | ^    | ^           |             | ~  | X |    | 12 | 1.0 |             | X  | 1    |
|                   | M                      | x    | x     | x       | x                |         |             |             |     |     |    | x           |             |      |             |             | X  | X | X  |    |     |             | Х  | X    |
|                   | Т                      | x    | х     | x       | x                |         |             |             |     |     |    | Ŷ           |             |      |             |             | X  | X | X  |    |     |             | X  | X    |
| Nickel and alloys | S                      | X    |       | X       |                  | X       | x           |             | -   | x   | x  | X           |             |      | v           | V           | v  | X |    |    |     | -           | X  |      |
|                   | 1                      | x    | x     | x       |                  | x       | x           |             |     | x   | x  | ^           |             | v    | Ĵ           | ~           | A  | X | X  | X  | X   | X           | X  | X    |
|                   | М                      | x    | x     | x       |                  |         | x           |             |     | ~   | Ŷ  |             |             | Ŷ    | ~<br>v      | ×           | X  | X | ×  |    |     |             | X  | X    |
|                   | Т                      | x    |       | x       |                  |         |             | x           |     |     | Ŷ  |             |             | Ŷ    | ×           | X           | X  | X |    |    |     |             | X  |      |
| Aluminum          | S                      | X    |       | X       |                  | X       | x           |             |     | X   | Y  | Y           | V           | ×    | ×           | ~           |    | X |    | -  | -   |             | X  |      |
| and alloys        | 1                      | x    |       | x       |                  | x       |             |             |     | x   | x  | ^           | Ŷ           | Ŷ    | ~           | X           | X  | X | X  | X  | X   | X           | х  | X    |
|                   | М                      | x    |       | x       |                  | x       |             |             |     | ~   | x  |             | ^           | ×    | ÷           | ×           | X  | X |    |    | X   |             | X  | X    |
|                   | Т                      | x    |       | x       |                  |         |             | x           | x   |     | x  |             |             | ~    | ~           |             | X  | X |    |    | X   |             | X  |      |
| Titanium          | S                      |      |       | X       |                  | X       | x           |             | ~   | X   | ×  |             | v           |      | ×           | ~           |    | X | -  |    | -   |             | X  |      |
| and alloys        | 1                      |      |       | x       |                  | x       | x           |             |     | -   | Ŷ  |             | Ŷ           |      | ^           | X           |    | X | X  |    |     | X           | X  |      |
|                   | М                      |      |       | x       |                  | x       | x           |             |     |     | Ŷ  |             | ~           | ×    |             | X           |    | X |    |    |     |             | X  |      |
|                   | Т                      |      |       | x       |                  |         | x           |             |     |     | Ŷ  |             | ~           | ^    | ~           | X           |    | X |    |    |     |             | x  |      |
| Copperand         | S                      |      |       | x       |                  | X       | X           |             |     | x§  | X  |             | ^           |      | X           | X           |    | X |    |    |     |             | X  |      |
| alloys            | 1                      |      |       | x       |                  |         | ~           |             |     | Y   | ^  |             |             |      | ×           |             | X  | X | X  | X  |     |             | Х  | X    |
|                   | М                      |      |       | x       |                  |         |             |             |     | Ŷ   |    |             |             | X    |             |             |    | X |    | X  |     |             | Х  | X    |
|                   | Т                      |      |       | x       |                  |         |             |             |     | ^   |    |             |             | X    |             |             |    | X |    |    |     |             | X  |      |
| Magnesium         | S                      |      |       | X       |                  | X       |             |             | -   | v   | -  | -           | -           | X    |             |             |    | X |    |    |     |             | X  |      |
| ind alloys        | 1                      |      |       | x       |                  | x       |             |             |     | Ŷ   |    |             |             |      | X           | X           | X  | X |    |    | X   |             | х  |      |
|                   | М                      |      |       | x       |                  | ~       |             |             |     | 1   |    |             |             | X    | X           | X           | X  | X |    |    | X   |             | X  |      |
|                   | T                      |      |       | X       |                  |         |             |             |     |     |    |             |             | X    | X           | X           |    | X |    |    |     |             | X  |      |
| Refractory        | S                      |      |       | X       |                  | x       | X           |             |     | V   | ×  | - 2         | -           |      | X           | -           | -  |   | _  |    |     |             | 1  |      |
| lloys             | 1                      |      |       | x       |                  | ~       | Ŷ           |             |     | ×   | X  |             |             |      | X           |             | X  | X | Х  | X  |     | X           | X  |      |
|                   | M                      |      |       | -       |                  |         | ^           |             |     | X   | X  |             |             |      | X           |             | Х  | X |    |    |     |             | X  |      |
|                   | т                      |      |       |         |                  |         |             |             |     |     | X  |             |             |      |             |             |    |   |    |    |     |             |    |      |

\* SMAW = shielded metal arc welding; SAW = submerged arc welding; GMAW = gas metal arc welding; FCAW = flux cored arc welding; GTAW = gas tungsten arc welding; PAW = plasma arc welding; ESW = electroslag welding; EGW = electrogas welding; RW = resistance welding; FW = flash welding; OFW = oxyfuel gas welding; DFW = diffusion welding; FRW = friction welding; EBW = electron beam welding; LBW = laser beam welding; TB = torch brazing; FB = furnace brazing; RB = resistance brazing; IB = induction brazing; DB = dip brazing; IRB = infrared brazing; DB = diffusion brazing; and S = soldering.
\* S = sheet (up to 1/8 inch [in.] 3 millimeters [mm]); I = intermediate (1/8 in. to 1/4 in. [3 mm to 6 mm]); M = medium (1/4 in. to 3/4 in. [6 mm to 19 mm]);

<sup>‡</sup> Commercial process.

This document, and more, is available for download from Martin's Marine Engineering Page - www.dieselduck.net

|                             | Cost Definitions                                                                                            |
|-----------------------------|-------------------------------------------------------------------------------------------------------------|
| Variable                    | Definition                                                                                                  |
| Deposition rate, D          | Rate of weld metal deposited, lb/h (kg/h) (from data for 1 hour of continuous welding without arc stoppage) |
| Deposition<br>efficiency, E | Ratio of weld metal deposited to total weight of electrode used, %                                          |
| Operator factor, K          | Ratio of arc hours to clock hours for a welder, %                                                           |
| Labor rate, L               | Welder wages, \$/h                                                                                          |
| Overhead rate, O            | Cost of other business expenses, \$/h                                                                       |
| Power cost, P               | Electricity, \$/kWh                                                                                         |
| Amperes, A<br>Volts, V      | Vary according to specific welding procedure as well as electrode type and diameter                         |
| Material cost, M            | Electrodes, \$/lb (\$/kg); wire, \$/lb (\$/kg); and gas, \$/ft <sup>3</sup> ( \$/m <sup>3</sup> );          |

#### Table 2 : Manual Arc Welding Values for Steel

|         | Manual Arc Welding Values    | for Steel*                     |
|---------|------------------------------|--------------------------------|
| Process | Deposition Efficiency<br>(E) | Operator Factor (K)<br>Average |
| SMAW    | 65%                          | 25%                            |
| GTAW    | 90%                          | 25%                            |
| GMAW    | 95%                          | 35%                            |
| FCAW    | 85%                          | 35%                            |
| SAW     | 98%                          | 50%                            |

\* Users are advised to use in-house time studies for actual values.

#### **Table 3 : Equations**

| EQUATIONS USED TO ESTIMA                                                | ATE the DIRECT COSTS of ARC WELDING                                                 | Total welding time, T (h) | $T = \frac{W}{D \times K}$                                                                                                       |                                                                                                          |  |  |  |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|
| COST                                                                    | EQUATION                                                                            |                           | Total weight of weld metal, W (lb [kg])                                                                                          | $W = S \times N \times C$                                                                                |  |  |  |
| Gas cost per unit weight of deposited<br>metal, \$/lb (\$/kg)           | $Cost_{gas} = \frac{G \times F}{D}$                                                 | (1)                       | Welding time per unit length for a specific joint, $T_{\text{Joint}}$                                                            | $T_{\rm Joint} = W + (D \times K)$                                                                       |  |  |  |
| Power cost per unit weight of deposited<br>metal, \$/lb (\$/kg)         | $Cost_{power} = \frac{P \times V \times A}{1000 \times D}$                          | (2)                       |                                                                                                                                  | Electrode or wire (lb [kg]) = W + E                                                                      |  |  |  |
| Cost of materials per unit weight of<br>deposited metal, \$/1b (\$/kg)  | $Cost_{Materials} = \frac{M}{E}$                                                    | (3)                       | Total consumables required                                                                                                       | SAW flux (lb [kg]) = $\frac{1.5W}{E}$                                                                    |  |  |  |
| Labor rate per unit weight of deposited metal, \$/lb (\$/kg)            | $Cost_{Labor} = \frac{L \times K}{D \times 100}$                                    | (4)                       |                                                                                                                                  | $Gas (ft^3[m^3]) = \frac{(F \times T)}{E}$                                                               |  |  |  |
| Overhead cost per unit weight of deposited<br>metal, \$/lb (\$/kg)      | $Cost_{Overkead} = \frac{O}{D \times \left(\frac{K}{100}\right)}$                   | (5)                       | Key:<br>A = Amperes<br>C = Specific gravity of metal, 1b/in. <sup>3</sup><br>D = Denosition rate. 1b/h (kg/h)                    | K = Operator factor, %<br>L = Labor rate, dollars (or other currency) pe<br>M = Cost of materials. \$//b |  |  |  |
| Total cost of weld per unit weight of<br>deposited metal, \$/lb (\$/kg) | Costweld per unit length of deposited metal = Sum of Eqs. (1) through (5)           | (6)                       | F = Flow rate, cubic feet per hour<br>G = Unit cost of gas or flux by volume, \$/ft <sup>3</sup><br>E = Deposition efficiency. % | M = Cost of materials, 5/10<br>N = Length of specified weld, in. (mm)<br>O = Overhead rate, \$/h         |  |  |  |
| Total cost of weld per unit length of joint,<br>\$/ft (\$/m)            | Costweldperunit length of joint =<br>Costweldperunit length of deposted metal X S   | (7)                       | P = Power cost, (\$/kWh)<br>W= Total weight of weld metal, *lb/ft (kg/m)<br>S = Cross-sectional area of weld joint, in.          | 2                                                                                                        |  |  |  |
| Total cost of weld, \$                                                  | Total Cost <sub>Weld</sub> =<br>Costweldperuni lengh of deposied metal XW or (7)X N | (8)                       | T= Total welding time,h<br>V= Volts+                                                                                             |                                                                                                          |  |  |  |

\*Steel weighs0.283lb/in.<sup>3</sup>(7.8x10<sup>-6</sup>kg/mm<sup>3</sup>)

=

# Flux and Copper Backing (FCB)

| cation                   | 11 A.                                                                                                                         | Name                                                                                                                                                                                   | Welding Process               |                                                                                           |  |  |  |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|
| Process Equipment        | FCB (Flux and<br>Welding Proces                                                                                               | Copper Backing)<br>s                                                                                                                                                                   | Submerged Arc Welding Process |                                                                                           |  |  |  |  |  |
| Qutline<br>of<br>Process | Automatic one-<br>ing method in w<br>can be obtained<br>face bead by w<br>face side after<br>copper backing<br>backing to the | side submerged arc weld-<br>which uniform reverse bead<br>I simultaneously with sur-<br>elding only from the sur-<br>spreading backing flux on<br>and pressing copper<br>reverse side. |                               | Submerged Arc Welding<br>Flux<br>Base Metal<br>Backing Flux<br>Copper Backing<br>Air Hose |  |  |  |  |  |
| Application              | Panel Joint of                                                                                                                | Upper Deck<br>Inner Bottom<br>Bottom Plating<br>Side Plating<br>Inner Bulkhead                                                                                                         | Quentity                      | •                                                                                         |  |  |  |  |  |
| Construction             | Welding Power<br>Backing Equipm                                                                                               | Source, Welding Torch (2 or<br>ent                                                                                                                                                     | 3 Torches), Ca                | rriage,                                                                                   |  |  |  |  |  |
| Main<br>Function         | <ol> <li>Welding Cur</li> <li>Welding Wir</li> <li>Welding Wir</li> <li>Applied Stee</li> <li>Applied Thic</li> </ol>         | rent : 800~1.500A<br>e : 4,8mm ø, 6.4mm ø<br>l Plate : Mild Steel, 50kgf/må<br>:kness : 6~45mm                                                                                         | High Strength St              | eel up to GradeII                                                                         |  |  |  |  |  |
| Merit                    | Low running co<br>High welding ef                                                                                             | st in spite of high equipment<br>ficiency by using roller conve                                                                                                                        | investment<br>yor together    |                                                                                           |  |  |  |  |  |



This document, and more, is available for download from Martin's Marine Engineering Page - www.dieseiduck.ne

216

# Flux and Asbestos Backing (FAB)

| Cation                   | 1.1                                                                         |                                                                                                                                                                                                                                     |                                                                                                                      |                                          | weiding Process                       |  |  |  |  |  |  |  |
|--------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------|--|--|--|--|--|--|--|
| Process Equip-<br>ment   | FAB (Flu<br>Submerge                                                        | x and Asbesto<br>d Arc Welding                                                                                                                                                                                                      | s Backing) One Side<br>Process                                                                                       | Submer                                   | ged Arc Welding Process               |  |  |  |  |  |  |  |
| Qutline<br>of<br>Process | One-side<br>using flex<br>consists o<br>wrapped<br>The backi<br>supported   | Une-side submerged arc welding process<br>using flexible backing material which<br>consists of glass tape, flux, asbestos<br>wrapped in a thermo-shrinkage film.<br>The backing material is usually<br>supported by magnetic clamp. |                                                                                                                      |                                          |                                       |  |  |  |  |  |  |  |
|                          | Stage                                                                       | Joint                                                                                                                                                                                                                               | Structure                                                                                                            |                                          |                                       |  |  |  |  |  |  |  |
| Application              | Assembly<br>Erection                                                        | Butt Joint                                                                                                                                                                                                                          | <ul> <li>Curved Outside Plating</li> <li>Upper Deck</li> <li>Inner Bottom Plating</li> <li>Bottom Plating</li> </ul> | Quantity                                 |                                       |  |  |  |  |  |  |  |
| Construction             | <ol> <li>Weldir</li> <li>Weldir</li> </ol>                                  | ng Power Sour<br>ng Machine                                                                                                                                                                                                         | ce (1,500A Drooping C<br>③ Rail ④ Contro                                                                             | haracteristi<br>I Box (5                 | ics AC)<br>Operation Box              |  |  |  |  |  |  |  |
| Main<br>Function         | <ol> <li>Weldin</li> <li>Weldin</li> <li>Wire F</li> <li>Applied</li> </ol> | g Current : 800<br>g Wire : 4.8mm<br>'eeder Speed C<br>d Plate Thickn                                                                                                                                                               | )~1,100A<br>n ∉, 6.4mm ∉<br>control : Arc Voltage Co<br>ess : 11~35mm                                                | ontrol                                   | :                                     |  |  |  |  |  |  |  |
| Merit                    | 1. Stable<br>2. Insensi<br>3. Easy t                                        | welding qualit<br>tive to bevel a<br>o weld from o                                                                                                                                                                                  | y of curved joint becau<br>ccuracy and stable wel<br>ne side and useful to i                                         | se of flexit<br>ding qualit<br>mprove wo | ble backing<br>y<br>rking environment |  |  |  |  |  |  |  |



#### **Assembling Sequence from Plate Panels into Sections**



#### **Blocks Layout for a Bulkcarrier**



#### Welding Processes for a Midship Section



This document, and more, is available for download from Martin's Marine Engineering Page - www.dieselduck.net

#### **Welding Processes for a Midship Section**



Midship section of a bulkcarrier with the welding processes used (SHI Oppama Shipyard).

#### Welding Processes for a Midship Section

| No. | Welding Process                                             | Abbre- | Symbols                                                                                                                                                                                                                                                           | Joint Position       | Joint Dezin                          | Bass Me<br>Grade     | tal<br>mm         | Shield Ga           | s Welding<br>Materials   | Backing<br>Material | WPS No.                                        | Remarke |
|-----|-------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------|----------------------|-------------------|---------------------|--------------------------|---------------------|------------------------------------------------|---------|
| 01  | Both side Submerged Arc<br>Welding (AUTO)                   | SAW    | ×X-<                                                                                                                                                                                                                                                              | Flat<br>Groove       | X Groove                             | DH40                 | 30                | Non                 | US-36<br>PFH-55E         | Non                 | LR-40-01-R                                     |         |
| 02  | One side Submerged Arc<br>Welding (FCB)                     | FCB    | / <f< td=""><td>Flat<br/>Groove</td><td>40Y Groove</td><td>DH40<br/>EH36</td><td>30<br/>25.4</td><td>Non</td><td>US-36<br/>PFI-55E</td><td>MF-1R<br/>Cu-Back.</td><td>LR-40-02-R<br/>LR-36-05-R</td><td></td></f<>                                                | Flat<br>Groove       | 40Y Groove                           | DH40<br>EH36         | 30<br>25.4        | Non                 | US-36<br>PFI-55E         | MF-1R<br>Cu-Back.   | LR-40-02-R<br>LR-36-05-R                       |         |
| 03  | One side Submerged Arc<br>Welding (FAB)                     | FAB .  | A                                                                                                                                                                                                                                                                 | Flat<br>Groove       | 50V Groove                           | DH40<br>EH36         | 30<br>25.4        | Non                 | US-36<br>PFI-52E<br>BB-2 | FAB-1               | LR-40-03-R<br>LR-36-06-R                       |         |
| 04  | Both side CO, Semi<br>Automatic Arc Welding                 | FCAW   | ~                                                                                                                                                                                                                                                                 | All<br>Groove        | 40V Groove                           | DH40                 | 30                | CO <sub>2</sub> 100 | % SF-1<br>DW-100         | Non                 |                                                |         |
| 05  | One side CO <sub>2</sub> Semi<br>Automatic Arc Welding      | FCAW   | CS CS                                                                                                                                                                                                                                                             | F, Vr, Ho.<br>Groove | 40V Groove                           | DH40<br>EH36         | 30<br>25.4        | CO, 100             | % SF-1, DW-100<br>SF-3   | ABH-5               | LR-40-05~07-R<br>LR36-07~09-R                  | 1       |
| 06  | One side CO <sub>2</sub> Semi<br>Automatic Arc Welding      | FCAW   | CS CS                                                                                                                                                                                                                                                             | F, Vr<br>Groove      | 40V Groove                           | DH40<br>EH40         | 50<br>50          | CO <sub>2</sub> 100 | % SF-3<br>SF-36E         | ABH-5               | LR-93-C-D40-01,2<br>LR-93-C-E40-05,6           |         |
| 07  | One side CO, Automatic<br>Arc Welding                       | FCAW   | , → <cs< td=""><td>Vert. up<br/>Groove</td><td>40V Groove</td><td>EH36<br/>DH40<br/>EH40</td><td>25.4<br/>50<br/>50</td><td>CO, 100</td><td>% SF-3<br/>SF-3<br/>SF-36E</td><td>SB-41</td><td>LR-36-04-R<br/>LR-93-C-D40-04<br/>LR-93-C-E40-08</td><td></td></cs<> | Vert. up<br>Groove   | 40V Groove                           | EH36<br>DH40<br>EH40 | 25.4<br>50<br>50  | CO, 100             | % SF-3<br>SF-3<br>SF-36E | SB-41               | LR-36-04-R<br>LR-93-C-D40-04<br>LR-93-C-E40-08 |         |
| 08  | One side CO, Automatic<br>Arc Welding                       | FCAW   | A CS                                                                                                                                                                                                                                                              | Horls.<br>Groove     | 30.15 Groove                         | DH40<br>EH-36        | 30<br>25.4        | CO <sub>2</sub> 100 | % SF-1, DW-100<br>SF-3   | SB-41               | LR-40-07-R<br>LR-36-02-R                       |         |
| 09  | One side CO <sub>2</sub> Automatic<br>Arc Welding (Singl)   | GMAW   |                                                                                                                                                                                                                                                                   | Flat<br>Groove       | 50V Groove                           | EH40                 | 50                | CO, 100             | % YM-55H<br>YK-CM        | SB-41               | LR-93-C-E40-09                                 |         |
| 10  | One side CO <sub>2</sub> Automatic<br>Arc Welding (Tandem)  | GMAW   | A>~~~                                                                                                                                                                                                                                                             | Flat<br>Groove       | 50V Groove                           | EH36                 | 25.4              | CO, 100             | % YM-55H<br>YK-CM        | SB-41               | LR-36-01-R                                     |         |
| 11  | One side CO, Automatic<br>Arc Welding (Singi)<br>(15° ¥ 20) | GMAW   | ~~~A                                                                                                                                                                                                                                                              | Flat<br>Groove       | 50V Groove                           | EH36                 | 25.4              | CO, 100             | % ҮМ-55Н<br>ҮК-СМ        | SB-41               | LR-36-03-R                                     |         |
| 12  | CO, Semi Automatic Arc                                      | FCAW   |                                                                                                                                                                                                                                                                   | All<br>Fillet        | Fillet                               | DH40                 | 30                | CO, 100             | % SF-1<br>DW-100         | Non                 |                                                |         |
| 13  | CO, Automatic Arc Welding                                   | FCAW   |                                                                                                                                                                                                                                                                   | Horis.<br>Fillet     | Fillet                               | DH36                 | 25.4              | CO, 100             | % SF-1<br>DW-100         | Non                 |                                                |         |
| 14  | CO <sub>2</sub> Automatic Arc Welding                       | FCAW   | ·                                                                                                                                                                                                                                                                 | Vert. up<br>Fillet   | Fillet                               | DH36                 | 25.4              | CO, 100             | % SF-1<br>DW-100         | Non                 |                                                |         |
| 15  | CO <sub>2</sub> Tandem Twin Auto Arc<br>Welding             | FCAW   |                                                                                                                                                                                                                                                                   | Horis.<br>Fillet     | Fillet                               | DH36                 | 25.4              | CO, 100             | % SM-1F                  | Non                 | LR-36-07-R                                     |         |
| 16  | Gravity Arc Welding                                         | SMAW   |                                                                                                                                                                                                                                                                   | Horis.<br>Fillet     | Fillet .                             | EH36                 | 25.4              | Non                 | LBA-50<br>EX-50F         | Non                 | LR-36-09-R                                     | 1       |
| 17  | Easy Electrogas Welding (AUTO)                              | SEG    | , ∽~~SG                                                                                                                                                                                                                                                           | Vert. up<br>Groove   | Groove                               | DH40                 | 30                | CO, 100             | % DW-43Q                 | KL-43G              | LR-40-09-R                                     |         |
| 18  | Robotic Arc Welding                                         | GMAW   | his document, an                                                                                                                                                                                                                                                  | Yert Horis availa    | o <b>fe<sup>n</sup>ti</b> r download | c fP6HPMa            | rti <b>%</b> s Ma | ine Engine          | ring Page 28 www.diese   | loutent             |                                                |         |

#### Selection of Welding Processes in the Erection Stage: Horizontal and Flat Position

|        | The notation of weldi    | ing process is the same as before. Some new notation has been added.                                              |
|--------|--------------------------|-------------------------------------------------------------------------------------------------------------------|
|        | SAW                      | One-sided submerged-arc welding                                                                                   |
|        | EG                       | Electrogas arc welding with copper slide shoe backing                                                             |
|        | SEG                      | Simplified electrogas arc welding with fixed ceramic backing                                                      |
|        | G                        | Gas metal arcwelding (semi-automatic)                                                                             |
|        | GSM                      | Gas metal arc welding (simple mechanized)                                                                         |
|        | GMAW                     | (Automatic with highly advanced functions)                                                                        |
|        |                          | -Joint tracking                                                                                                   |
|        | GHA                      | -Sequence controlled multipass welding system                                                                     |
|        |                          | -Adaptive controlled welding system                                                                               |
|        | GOS                      | GMAW One-sided (semi-automatic) + submerged-arc welding                                                           |
|        | Welding Procedures       | in the Horizontal Position                                                                                        |
|        | G                        | Widely applied.                                                                                                   |
|        | GSM                      | Many cases for joints with thickness over 15 mm and length over 2 metres.                                         |
|        | GHA                      | Few applications.                                                                                                 |
|        | Few cases for joints w   | with medium thickness and long length                                                                             |
|        | Selection of welding     | procedures in the flat position                                                                                   |
|        | 1. Plate thickness lim   | itations:                                                                                                         |
|        | There is no technical    | limitation for plate thickness to apply G, GSM, or GHA.                                                           |
|        | Application. of SAW      | to plate under 10 mm is limited to prevent severe deformation. Application to thicknesses over 35 mm is limited   |
| to pre | vent hot cracking in the | e root pass.                                                                                                      |
|        | To apply GOS, same       | passes of GMAW are required to prevent burn through by SAW. Therefore, applicatian to thin plate is limited.      |
|        | 2. Economical limitat    | tions and/or manpower limitations:                                                                                |
|        | SAW has a high depo      | sition rate, but it takes time and manpower to fit-up joints with high groove accuracy and to set-up heavy weldin |
| equipi | nent in the erection sta | ge. Therefore, economical limitation to the weld length exists for each plate thickness.                          |
|        | <b>0 m 1 1 1 1 1</b>     |                                                                                                                   |

3. Technical limitations:

GHA is applied in few cases. The accuracy of the weld joint in the erection stage is not good and the development of a sensing system for irregular joints, and a database which corresponds to irregular weld joints is expected.

#### **Selection of Welding Procedures**



This document, and more, is available for download from Martin's Marine Engineering Page - www.dieselduck.net

A V Odebeer 2000

#### Welding Time (Hours)

|             | (                            | SMAW s   | emiauto | >    | _     | SAW oneside |                                |         |         |        |     |        |     |
|-------------|------------------------------|----------|---------|------|-------|-------------|--------------------------------|---------|---------|--------|-----|--------|-----|
| t (mm)      | 10                           | 15       | 20      | 25   | 30    | 35          | t (mm)                         | 10      | 15      | 20     | 25  | 30     | 35  |
| operator    | 1                            | 1        | 1       | 1    | 1     | 1           | operator                       | 2       | 2       | 2      | 2   | 2      | 2   |
| groove      | 40                           | 40       | 40      | 40   | 40    | 40          | electrode                      | 1       | 1       | 2      | 2   | 2      | 2   |
| root gap    | 5                            | 5        | 5       | 5    | 5     | 5           | Pass                           | 1       | 1       | 1      | 1   | 2      | 2   |
| depo, ratio | 80                           | 100      | 120     | 120  | 120   | 120         | speed(cpm)                     | 35      | 30      | 35     | 30  | 30     | 25  |
| preparation | preparation 0.5hr X 1 welder |          |         |      |       |             | preparation 1hr X 2 operators  |         |         |        |     |        |     |
| arc time %  |                              |          | 35      | %    |       |             | arc time %                     |         |         |        |     |        |     |
| Area x Le   | ngth x 7                     | 7.85 x o | perator |      | +prej | pa-         | Length x pass x 100 x operator |         |         |        |     | + prep | a-  |
| depo. rat   | io x 6 0                     | x arc t  | ime %   |      | rati  | on          | speed                          | x 6 0 x | arc tim | ration |     |        |     |
| length (m)  | 297633                       | Ŵ        | reld    | time |       |             | length (m)                     |         |         | _      |     |        |     |
| 0.3         | 0.7                          | 0.7      | 0.8     | 0.9  | 1.0   | 1.2         | 0.3                            | 2.1     | 2.1     | 2.1    | 2.1 | 2.3    | 2.3 |
| 0.5         | 0.8                          | 0.9      | 1.0     | 1.2  | 1.4   | 1.6         | 0.5                            | 2.2     | 2.2     | 2.2    | 2.2 | 2.4    | 2.5 |
| 1.0         | 1.1                          | 1.3      | 1.5     | 1.8  | 2.2   | 2.7         | 1.0                            | 2.4     | 2.4     | 2.4    | 2.4 | 2.9    | 3.1 |
| 2.0         | 1.7                          | 2.1      | . 2.4   | 3.1  | 3.9   | 4.9         | 2.0                            | 2.8     | 2.9     | 2.8    | 2.9 | 3.8    | 4.1 |
| 5.0         | 3.6                          | 4.4      | 5.3     | 7.1  | 9.1   | 11.5        | 5.0                            | 3.9     | 4.2     | 3.9    | 4.2 | 6.4    | 7.3 |

Table 3.10 A comparison of total welding hours (flat position)



This document, and more, is available for download from Martin's Marine Engineering Page - www.dieselduck.net Weld length with same welding hours (flat position).

A V Odebeer 2000

#### **Welding Procedures in the Vertical Position**

#### 1. Plate thickness limitations:

There is no technical limitation regarding plate thickness for the application of G; GSM, or GHA.

Application of EG to plate of under 10 mm in thickness is limited by controlling the position of the wire during welding.

Since EG is carried out with fixed backing, SEG is applied for a wider range than EG. Same shipyards apply a two pass technique.

#### 2. Economical limitations and/or manpower limitations:

EG or SEG is a high deposition rate process with a long joint preparation time to achieve high groove accuracy. Heavy welding equipment is required in the erection stage, and economical limitations to weld lengths therefore exist for each plate thickness.

#### **3. Technical limitations:**

GHA is applied in a few cases. As the accuracy of the weld joint in the erection stage is not good, development is expected of a sensing system and a database which corresponds to irregular weld joints.

#### **Selection of Welding Procedures**



This document, and more, is available for download from Martin's Marine Engineering Page - www.dieselduck.net

#### Welding Time (Hours)

<sup>14</sup>. Welding systems and processes 99

|             |         | GMAW s   | emiaut  | 0    |      |      | Electro Gas Welding |                   |         |         |      |        |      |  |
|-------------|---------|----------|---------|------|------|------|---------------------|-------------------|---------|---------|------|--------|------|--|
| t (mm)      | 10      | 15       | 20      | 25   | 30   | 35   | t (mm)              | 10                | 15      | 20      | 25   | 30     | 35   |  |
| operator    | 1       | 1        | 1       | 1    | 1    | . 1  | operator            | 2                 | 2       | 2       | 2    | 2      | 2    |  |
| groove      | 40      | 40       | 40      | 40   | 40   | 40   |                     |                   |         |         |      |        | 0.00 |  |
| root gap    | 5       | 5        | 5       | 5    | 5    | 5    | Pass                | 1                 | 1       | 1       | 1    | 1      | 1    |  |
| depo, ratio | 30      | 40       | 40      | 40   | 40   | 40   | speed(cpm)          | 14                | 12      | 10      | 8    | 6      | 4    |  |
| preparation |         | 0.5hr X  | 1 welde | er   |      |      | preparation         | 2hr X 2 operators |         |         |      |        |      |  |
| arc time %  |         |          | 35%     |      |      |      | arc time %          |                   |         |         |      |        |      |  |
| Area x Le   | ngth x  | 7.85 x 0 | operato | r    | +pre | pa-  | Length x            | pass x 1          | 00 x 0  | perator | ·    | +pre   | pa-  |  |
| depo. ra    | tio x 6 | 0 x arc  | time %  |      | rati | on   | speed               | x 6 0 x           | arc tin | ne %    |      | ration |      |  |
| length (m)  |         | 1        | weld    | time |      |      | length (m)          |                   | 1       | weld    | time |        |      |  |
| 0.3         | 1.0     | 1.1      | 1.4     | 1.7  | 2.1  | 2.5  | 0.3                 | 4.3               | 4.3     | 4.4     | 4.5  | 4.7.   | 5.0  |  |
| 0.5         | 1.3     | 1.5      | 1.9     | 2.5  | 3.1  | 3.8  | 0.5                 | 4.5               | 4.6     | 4.7     | 4.8  | 5.1    | 5.7  |  |
| 1.0         | 2.2     | 2.5      | 3.4     | 4.4  | 5.7  | 7.1  | 1.0                 | 5.0               | 5.1     | 5.3     | 5.7  | 6.2    | 7.3  |  |
| 2.0         | 3.8     | 4.4      | 6.2     | 8.4  | 10.8 | 13.7 | 2.0                 | 5.9               | 6.2     | 6.7     | 7.3  | 8.4    | 10.7 |  |
| 5.0         | 8.8     | 10.3     | 14.8    | 20.2 | 26.4 | 33.4 | 5.0                 | 8.8               | 9.6     | 10.7    | 12.3 | 15.1   | 20.7 |  |

Table 3.11 A comparison of total welding hours (vertical position)



Weld length with same welding hours (vertical position).

This document, and more, is available for download from Martin's Marine Engineering Page - www.dieselduck.net

Figure shows a summary of applications.

## 1. Plate thickness limitations:

There are no technical limitations to plate thickness in applying G, GSM or GHA.

**2. Economical limitations and/or manpower limitations**: As there is no practical high deposition rate process for horizontal welding, only GMAW is applied at present. The cost of welding facilities increases in the order of G, GSM and GHA.

#### **Selection of Welding Procedures**



This document, and more, is available for download from Martin's Marine Engineering Page - www.dieselduck.net

A V Odebeer 2000

#### **Shipyard Layout**



This document, and more, is available for download from Martin's Marine Engineering Page - www.dieselduck.net

#### **Stock Area**



#### **Plate Lifting and Plasma Cutting**





This document, and more, is available for download from Martin's Marine Engineering Page - www.dieselduck.net

## Marking





#### **Submerged Arc Welding of Plates**





This document, and more, is available for download from Martin's Marine Engineering Page - www.dieselduck.net

#### **Palet System for Stiffeners**





This document, and more, is available for download from Martin's Marine Engineering Page - www.dieselduck.net

A V Odebeer 2000

#### **Temporary Welding**





#### **Stiffeners Final Welding**





#### **Sub Assembly Examples**



#### **Panel Line**



#### **Panel and Bulkhead Line**



#### PRODUCTIVITY

| No. of panels per 8 Hrs. shift: 1,5-2,0 |
|-----------------------------------------|
| No. of workers: 8                       |
| No. of plate joints per Hr.: ca. 1,2    |
| No. of stiffeners per 8 Hrs. shift: 24  |
| (multidirectional stiffener mounting).  |

#### EQUIPMENT

- 1. Roller bed and plate alignment frame.
- 2. One side Buttwelding Station.
- 3. Stiffener Mounting Gantry.
- 4. Automatic Filletwelding Gantry.
- 5. Web Mounting and Welding Service Gantry.

#### DESCRIPTION

The TTS Small Panel and Bulkhead line will produce small panels and bulkheads with 7-12 meters width and with the stiffener mounted in any selected horizontal direction.

In an 8 hours shift 8 workers will produce 11/2-2 panels with 12-16 stiffeners and additional webs and brackets.

The Panel and Bulkhead line has a specialized mobile gantry with a swivel mounted clamping yoke for alignment and mounting of stiffeners in any selected horizontal direction.

- A. PLATE JOINTING. Plate alignment and tacking. One side, single pass automatic buttwelding.
- B. STIFFENER MOUNTING. Stiffener alignment, clamping and tacking by Stiffener Mounting Gantry.
- C. STIFFENER WELDING. Automatic filletwelding of stiffeners by Autowelding Gantry.
- D. WEB MOUNTING AND WELDING. Alignment and clamping by hydraulic handling and fairing unit on the Web Mounting and Welding Service Gantry. Tacking and final welding by semiautomatic MIG welding suspended on the gantry.

#### **Panel and Bulkhead Line: Main Components**



www.dieselduck.net ring Page

#### **Curved Panel Assembly**



#### **Sub Blocks**





**Blocks** 





This document, and more, is available for download from Martin's Marine Engineering Page - www.dieselduck.net

A V Odebeer 2000

#### **Paint Hall**



#### **Paint Hall**







This document, and more, is available for download from Martin's Marine Engineering Page - www.dieselduck.net

# **Questions**?

This document, and more, is available for download from Martin's Marine Engineering Page - www.dieselduck.net

A V Odebeer 2000