Ideas in Motion Georgian College Great Lakes International Marine Training & Research Centre

Marine Sanitation Devices: Effective Control and Proper Maintenance

Adam Bennett, Nalfleet Owen Sound, Ontario March 3rd, 2010

Lecture Objectives

- 1. Discuss regulation
- 2. Identify the two categories of MSDs
- 3. Recognize the importance of chemical, biological, and mechanical control of MSDs

You Are A Problem Solver!

Knowledge gives you an opportunity to solve and prevent problems

- Improve efficiency
- Ensure environmental compliance
- Achieve internal environmental goals
- Provide solutions for improving the process

IMO Regulation

- Typically cargo, naval and offshore vessels use small scale wastewater treatment plants called MSDs to treat sewage that is produced by 20 to 300 crewmembers.
- The International Maritime Organization (IMO), requires that all ships have approved sewage treatment systems fitted and operational as of September 27th, 2008.

Standards of the Regulatory Bodies

Effluent must be monitored for the following:

- BOD
- TSS
- Fecal Coliform
- pH
- Chlorine

Standard	Units	USCG 33CFR PT1-300	IMO MEPC.2(vi)	USCG 33CFR 159 PT300-600 Alaska	EU Blue Flame Bathing Water
Test duration		10 days	10 days	30 days	Once every two weeks
Suspended solids	mg/l	150	50 (100 at sea)	30	Not required
BOD ₅	mg/l	Not required	50	30	Not required
Faecal coliform	count/ 100ml	200	250	20	2000
ph		Not required	Not required	6.0 to 9.0	6.0 to 9.0
Chlorine	mg/l	Not required	As low as Practicable	10.0	Not required

CSA 2001

Canada Shipping Act

Section: Regulations for the Prevention of Pollution from Ships and for Dangerous Chemicals

Division 4: SEWAGE, Subdivision 5: Operational Testing

- 130. The Board may require testing of effluent from a marine sanitation device to ensure that the effluent meets the following standards, as determined by Standard Methods:
- in the case of a ship in an area other than a designated sewage area, the **fecal coliform** count of the samples of effluent is equal to or less than 250/100 mL;
- b) in the case of a ship in a designated sewage area, the **fecal coliform** count of the samples of effluent is equal to or less than 14/100 mL;
- the total suspended solids content of the samples of effluent is equal to or less than 50 mg/?L;
- d) the 5-day **biochemical oxygen demand** of the samples of effluent is equal to or less than 50 mg/L; and
- e) in the case of chlorine used as a disinfectant, the **total residual chlorine** content of the samples of effluent is equal to or less than 0.5 mg/L.

Current/Future Regulation

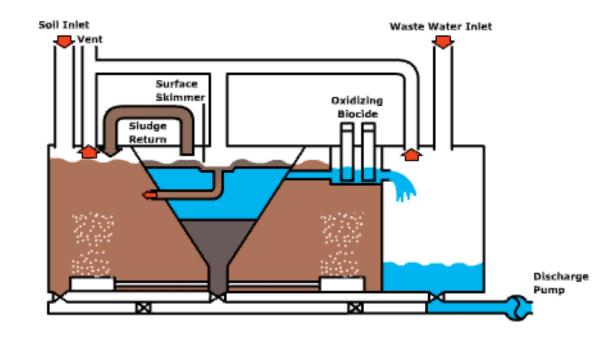
Resolution MEPC.159(55)

- Revised guidelines Guidelines that apply to all MSDs installed on or after January 1, 2010
- Recommendations that the effluent from MSDs should be:
 - below 0.5ppm Total Chlorine
 - below 25ppm BOD
 - below 35ppm TSS

System Overview

The majority of MSDs onboard offshore, cargo and naval vessels can be categorized in one of two varieties.

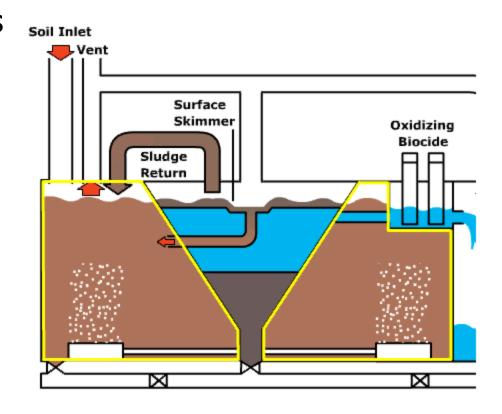
- 1. Biological Systems:
 - Activated Sludge, Aeration and Disinfection Systems
- 2. Physical Systems:
 - Maceration and Disinfection Systems



Activated Sludge, Aeration and Disinfection Systems

Three stage approach.

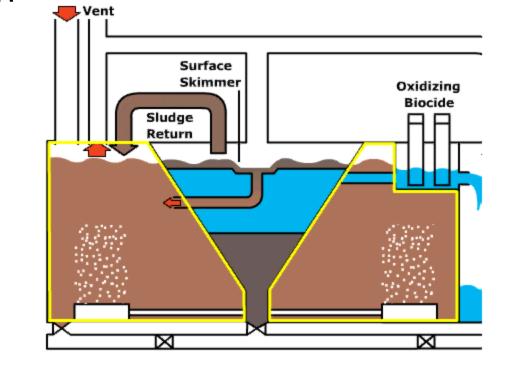
- 1. The aerobic chamber
- 2. The clarification chamber
- 3. The disinfection chamber



Activated Sludge, Aeration and Disinfection Systems - Aerobic Chamber

In the aerobic chamber the following processes occur:

- Wastewater organics are consumed
- Solids are broken down
- BOD is reduced
- Some settling occurs

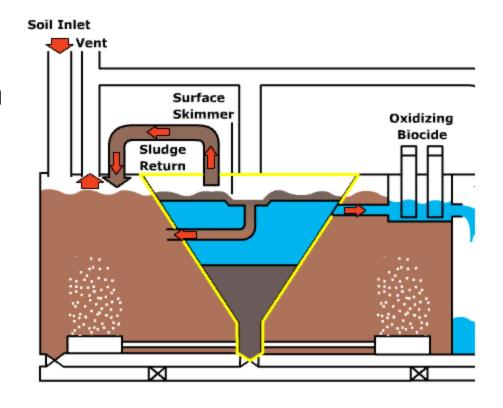

Activated Sludge, Aeration and Disinfection Systems - Aerobic Chamber

Soil Inlet

Aerobic chamber issues:

MAINTAIN THE BIOMASS!!

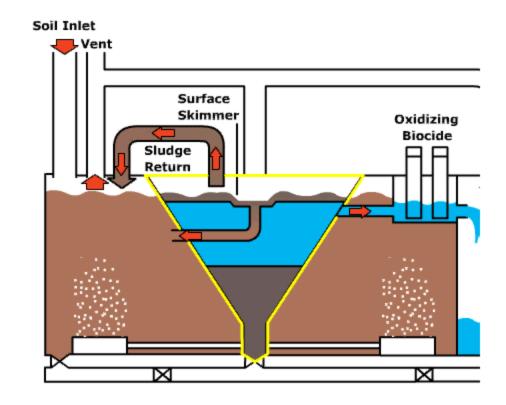
- 1. Flow rate
- 2. No Toxic Substances (Cleaners)
- 3. Proper Oxygen Level
- 4. Good Circulation



Activated Sludge, Aeration and Disinfection Systems - Clarification Chamber

Clarification Chamber

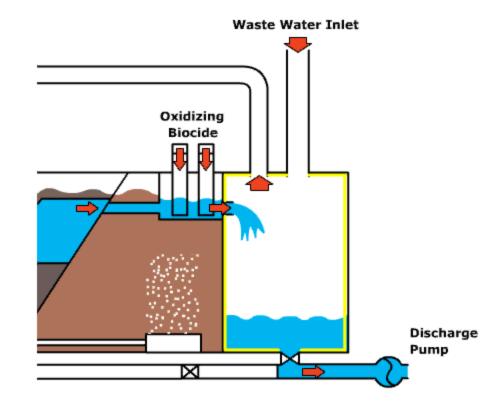
- Designed to remove more solids before entering the disinfection chamber.
- Solids are recirculated to the aerobic chamber.



Activated Sludge, Aeration and Disinfection Systems - Clarification Chamber

Clarification chamber issues:

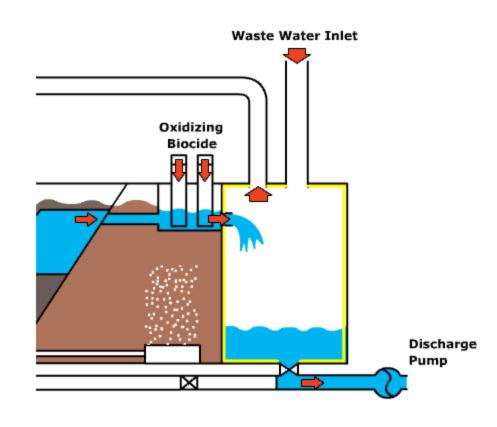
- 1. Good circulation
- 2. Excessive foaming



Activated Sludge, Aeration and Disinfection Systems - Disinfection Chamber

Oxidizing biocide:

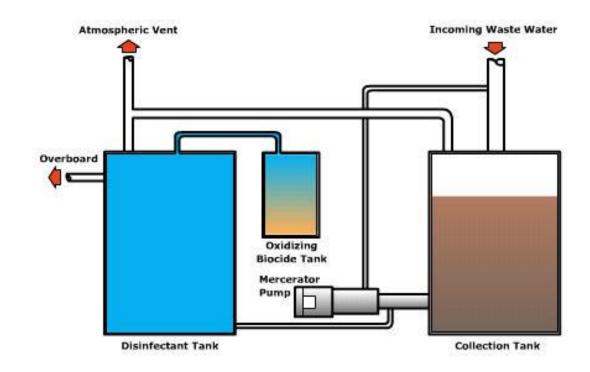
- 1. Bromine
- 2. Chlorine
- 3. Chlorine Dioxide



Activated Sludge, Aeration and Disinfection Systems - Disinfection Chamber

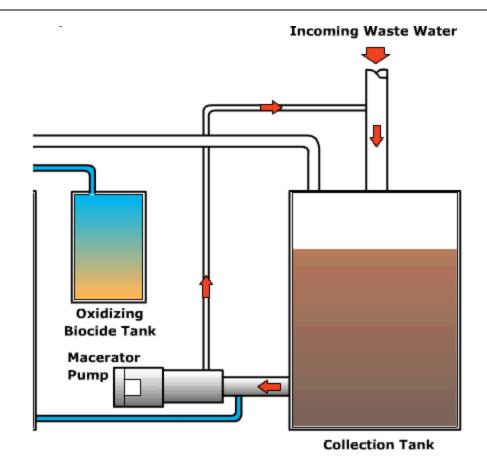
Disinfection Chamber issues:

- Test and monitor the biocide
- Monitor flowrate
- Monitor the chemical feed
 - Liquid observe the chemical feed pumps for proper operation
 - Tablets check the sounding tubes for clogs



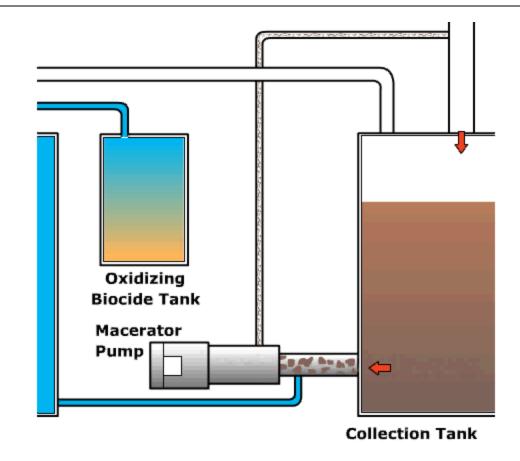
Maceration and Disinfection Systems

- 1.Collection
- 2. Maceration
- 3. Disinfection



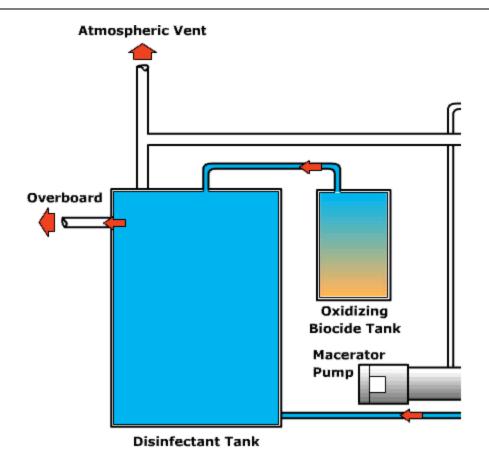
Maceration and Disinfection System - Collection

- Grey and black water are first collected in the collection tank.
- Periodically check the collection tank for good circulation.



Maceration and Disinfection System - Maceration

- The macerator pump grinds the solids down to a small particle size.
- A portion of the macerated waste is returned.



Maceration and Disinfection System - Disinfection

 The macerated wastewater enters the disinfection tank where an oxidizing biocide is introduced. The effluent from the system is sent overboard.

Total System Approach

You must monitor the chemical, biological, and mechanical operation of an MSD. The following should be carefully considered:

- Toilet, sink, and drain cleaners
- Bioaugmentation
- Antifoams
- Proper mechanical operation
- Disinfectant

Total System Approach Cleaning and Maintenance Products

Strong general detergents or solvents will disrupt and kill the biomass,

- resulting in poor digestion and filtration or plant shutdown
- this will result in regulatory discharge violations.
- If the plant shuts down, it must be drained and refilled and the biomass must be re-established.

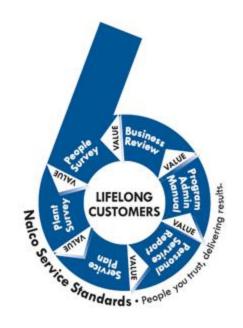
To prevent the upset, only use cleaners and maintenance products that are pH neutral.

Total System Approach Bioaugmentation

- A Bioaugmentation Culture that is specifically designed for use in MSDs should be used.
- The Bioaugmentation Culture will rapidly establish a healthy biomass in aerobic wastewater treatment systems.

Total System Approach Antifoam

- To control foaming, an antifoam specifically designed for a marine sanitation device should be used.
- It is good practice to keep antifoam on hand in the event of excessive foaming.



Total System Approach Mechanical

- A preventative maintenance program will monitor:
- 1. Flowrates
- 2. Circulation
- 3. Wastestream
- 4. Air compressors
- 5. Pumps

Lecture Objectives

- 1. Discuss regulation
- 2. Identify the two categories of MSDs
- 3. Recognize the importance of chemical, biological, and mechanical control of MSDs

